Properties

Label 2-81144-1.1-c1-0-43
Degree $2$
Conductor $81144$
Sign $-1$
Analytic cond. $647.938$
Root an. cond. $25.4546$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·11-s + 3·13-s + 2·19-s + 23-s − 4·25-s + 5·29-s + 37-s − 3·41-s − 7·43-s − 13·47-s + 6·53-s − 2·55-s + 12·59-s − 4·61-s + 3·65-s + 8·71-s + 2·73-s − 10·79-s + 4·83-s + 16·89-s + 2·95-s − 11·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.603·11-s + 0.832·13-s + 0.458·19-s + 0.208·23-s − 4/5·25-s + 0.928·29-s + 0.164·37-s − 0.468·41-s − 1.06·43-s − 1.89·47-s + 0.824·53-s − 0.269·55-s + 1.56·59-s − 0.512·61-s + 0.372·65-s + 0.949·71-s + 0.234·73-s − 1.12·79-s + 0.439·83-s + 1.69·89-s + 0.205·95-s − 1.11·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 81144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(81144\)    =    \(2^{3} \cdot 3^{2} \cdot 7^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(647.938\)
Root analytic conductor: \(25.4546\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 81144,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
23 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - T + p T^{2} \) 1.37.ab
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 13 T + p T^{2} \) 1.47.n
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13015485663339, −13.64303385221474, −13.24830404881875, −12.97041040118731, −12.18076853046270, −11.70444811201723, −11.32472139717617, −10.64897184405027, −10.22238890142951, −9.771602702428975, −9.278487283837959, −8.585275818613478, −8.157634858165976, −7.781466001569121, −6.868055150696699, −6.620696033216328, −5.943546999404804, −5.357907830140646, −4.998643343332859, −4.218174782824629, −3.575931543138115, −3.031584678527838, −2.336911654685973, −1.654215346072374, −0.9793917756413183, 0, 0.9793917756413183, 1.654215346072374, 2.336911654685973, 3.031584678527838, 3.575931543138115, 4.218174782824629, 4.998643343332859, 5.357907830140646, 5.943546999404804, 6.620696033216328, 6.868055150696699, 7.781466001569121, 8.157634858165976, 8.585275818613478, 9.278487283837959, 9.771602702428975, 10.22238890142951, 10.64897184405027, 11.32472139717617, 11.70444811201723, 12.18076853046270, 12.97041040118731, 13.24830404881875, 13.64303385221474, 14.13015485663339

Graph of the $Z$-function along the critical line