Properties

Label 2-80850-1.1-c1-0-127
Degree $2$
Conductor $80850$
Sign $1$
Analytic cond. $645.590$
Root an. cond. $25.4084$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s + 6-s + 8-s + 9-s + 11-s + 12-s + 4·13-s + 16-s + 4·17-s + 18-s + 4·19-s + 22-s + 4·23-s + 24-s + 4·26-s + 27-s − 2·29-s + 2·31-s + 32-s + 33-s + 4·34-s + 36-s + 6·37-s + 4·38-s + 4·39-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.408·6-s + 0.353·8-s + 1/3·9-s + 0.301·11-s + 0.288·12-s + 1.10·13-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 0.917·19-s + 0.213·22-s + 0.834·23-s + 0.204·24-s + 0.784·26-s + 0.192·27-s − 0.371·29-s + 0.359·31-s + 0.176·32-s + 0.174·33-s + 0.685·34-s + 1/6·36-s + 0.986·37-s + 0.648·38-s + 0.640·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(80850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(645.590\)
Root analytic conductor: \(25.4084\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 80850,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(7.905791509\)
\(L(\frac12)\) \(\approx\) \(7.905791509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
11 \( 1 - T \)
good13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.82923255334378, −13.57391488913525, −13.18626780250684, −12.50721201426370, −12.10383165136182, −11.60939415442734, −10.99396794658606, −10.63376940951328, −9.997362813088776, −9.264032719683295, −9.145818598298458, −8.303117780392416, −7.780727276621888, −7.441094203529030, −6.718057988086340, −6.214230273144909, −5.640436386173551, −5.152144869239393, −4.418567933998982, −3.873744903939564, −3.342206198441564, −2.896851288077310, −2.162738418670122, −1.269940939761253, −0.8912493993671892, 0.8912493993671892, 1.269940939761253, 2.162738418670122, 2.896851288077310, 3.342206198441564, 3.873744903939564, 4.418567933998982, 5.152144869239393, 5.640436386173551, 6.214230273144909, 6.718057988086340, 7.441094203529030, 7.780727276621888, 8.303117780392416, 9.145818598298458, 9.264032719683295, 9.997362813088776, 10.63376940951328, 10.99396794658606, 11.60939415442734, 12.10383165136182, 12.50721201426370, 13.18626780250684, 13.57391488913525, 13.82923255334378

Graph of the $Z$-function along the critical line