Properties

Label 2-7865-1.1-c1-0-234
Degree $2$
Conductor $7865$
Sign $1$
Analytic cond. $62.8023$
Root an. cond. $7.92479$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3·3-s − 4-s − 5-s + 3·6-s + 2·7-s − 3·8-s + 6·9-s − 10-s − 3·12-s − 13-s + 2·14-s − 3·15-s − 16-s + 3·17-s + 6·18-s − 2·19-s + 20-s + 6·21-s + 3·23-s − 9·24-s + 25-s − 26-s + 9·27-s − 2·28-s + 5·29-s − 3·30-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.73·3-s − 1/2·4-s − 0.447·5-s + 1.22·6-s + 0.755·7-s − 1.06·8-s + 2·9-s − 0.316·10-s − 0.866·12-s − 0.277·13-s + 0.534·14-s − 0.774·15-s − 1/4·16-s + 0.727·17-s + 1.41·18-s − 0.458·19-s + 0.223·20-s + 1.30·21-s + 0.625·23-s − 1.83·24-s + 1/5·25-s − 0.196·26-s + 1.73·27-s − 0.377·28-s + 0.928·29-s − 0.547·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7865 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7865\)    =    \(5 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(62.8023\)
Root analytic conductor: \(7.92479\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7865,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.976916387\)
\(L(\frac12)\) \(\approx\) \(4.976916387\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad5 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good2 \( 1 - T + p T^{2} \) 1.2.ab
3 \( 1 - p T + p T^{2} \) 1.3.ad
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 10 T + p T^{2} \) 1.47.ak
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 5 T + p T^{2} \) 1.79.f
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.74350063602367030573920268471, −7.58835986181296175148697837555, −6.51360096390336955650130642169, −5.54983868364798826162143555264, −4.66253823121674624702234235363, −4.29364938374254802804126183259, −3.48312096216053555280166971640, −2.93060362983818886962882277117, −2.12115819758099243511560567089, −0.950551801700537359159001441602, 0.950551801700537359159001441602, 2.12115819758099243511560567089, 2.93060362983818886962882277117, 3.48312096216053555280166971640, 4.29364938374254802804126183259, 4.66253823121674624702234235363, 5.54983868364798826162143555264, 6.51360096390336955650130642169, 7.58835986181296175148697837555, 7.74350063602367030573920268471

Graph of the $Z$-function along the critical line