Properties

Label 2-78144-1.1-c1-0-19
Degree $2$
Conductor $78144$
Sign $1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 4·7-s + 9-s − 11-s + 2·13-s + 2·15-s − 2·17-s + 6·19-s − 4·21-s + 6·23-s − 25-s − 27-s + 2·29-s + 10·31-s + 33-s − 8·35-s + 37-s − 2·39-s − 10·41-s − 10·43-s − 2·45-s + 4·47-s + 9·49-s + 2·51-s − 10·53-s + 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1.51·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s + 0.516·15-s − 0.485·17-s + 1.37·19-s − 0.872·21-s + 1.25·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.79·31-s + 0.174·33-s − 1.35·35-s + 0.164·37-s − 0.320·39-s − 1.56·41-s − 1.52·43-s − 0.298·45-s + 0.583·47-s + 9/7·49-s + 0.280·51-s − 1.37·53-s + 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.914544797\)
\(L(\frac12)\) \(\approx\) \(1.914544797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
37 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.99122679706071, −13.45569597514315, −13.18949029351477, −12.21761996873961, −11.90720269059718, −11.51426686943175, −11.23242138317588, −10.63781362192979, −10.19110877093043, −9.514723849808920, −8.803834382053347, −8.275534777509799, −7.994888828889003, −7.409369685198743, −6.887745334095117, −6.329541959660146, −5.496011365037331, −5.112378445487104, −4.532176713761435, −4.262251763550578, −3.232915802179556, −2.913532664804390, −1.709254681818945, −1.316607004935142, −0.5065064241797911, 0.5065064241797911, 1.316607004935142, 1.709254681818945, 2.913532664804390, 3.232915802179556, 4.262251763550578, 4.532176713761435, 5.112378445487104, 5.496011365037331, 6.329541959660146, 6.887745334095117, 7.409369685198743, 7.994888828889003, 8.275534777509799, 8.803834382053347, 9.514723849808920, 10.19110877093043, 10.63781362192979, 11.23242138317588, 11.51426686943175, 11.90720269059718, 12.21761996873961, 13.18949029351477, 13.45569597514315, 13.99122679706071

Graph of the $Z$-function along the critical line