Properties

Label 2-78144-1.1-c1-0-1
Degree $2$
Conductor $78144$
Sign $1$
Analytic cond. $623.982$
Root an. cond. $24.9796$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·7-s + 9-s + 11-s − 4·13-s + 2·17-s + 8·19-s + 2·21-s − 2·23-s − 5·25-s − 27-s + 2·29-s − 8·31-s − 33-s − 37-s + 4·39-s + 6·41-s − 12·43-s − 10·47-s − 3·49-s − 2·51-s − 12·53-s − 8·57-s + 4·59-s − 2·63-s + 12·67-s + 2·69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.755·7-s + 1/3·9-s + 0.301·11-s − 1.10·13-s + 0.485·17-s + 1.83·19-s + 0.436·21-s − 0.417·23-s − 25-s − 0.192·27-s + 0.371·29-s − 1.43·31-s − 0.174·33-s − 0.164·37-s + 0.640·39-s + 0.937·41-s − 1.82·43-s − 1.45·47-s − 3/7·49-s − 0.280·51-s − 1.64·53-s − 1.05·57-s + 0.520·59-s − 0.251·63-s + 1.46·67-s + 0.240·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78144 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78144\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 37\)
Sign: $1$
Analytic conductor: \(623.982\)
Root analytic conductor: \(24.9796\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78144,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.3904044851\)
\(L(\frac12)\) \(\approx\) \(0.3904044851\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 - T \)
37 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 8 T + p T^{2} \) 1.31.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.14122221293996, −13.31331723152127, −13.08949270349049, −12.44429021764922, −11.97504503251907, −11.62098821781055, −11.20402286711472, −10.37830126261294, −9.915804397074035, −9.528846259516835, −9.352899121387134, −8.271151941332707, −7.890263434042354, −7.156721516360649, −6.972031180877822, −6.224825661704048, −5.611273943028382, −5.304973168484833, −4.619325761825281, −3.967544052922335, −3.209465280061951, −2.948752728724556, −1.827945672717355, −1.346250798368414, −0.2126326258001332, 0.2126326258001332, 1.346250798368414, 1.827945672717355, 2.948752728724556, 3.209465280061951, 3.967544052922335, 4.619325761825281, 5.304973168484833, 5.611273943028382, 6.224825661704048, 6.972031180877822, 7.156721516360649, 7.890263434042354, 8.271151941332707, 9.352899121387134, 9.528846259516835, 9.915804397074035, 10.37830126261294, 11.20402286711472, 11.62098821781055, 11.97504503251907, 12.44429021764922, 13.08949270349049, 13.31331723152127, 14.14122221293996

Graph of the $Z$-function along the critical line