Properties

Label 2-75712-1.1-c1-0-18
Degree $2$
Conductor $75712$
Sign $1$
Analytic cond. $604.563$
Root an. cond. $24.5878$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s + 7-s + 9-s − 2·11-s + 2·15-s − 3·17-s + 8·19-s − 2·21-s + 6·23-s − 4·25-s + 4·27-s + 9·29-s − 6·31-s + 4·33-s − 35-s − 3·37-s − 3·41-s + 2·43-s − 45-s − 12·47-s + 49-s + 6·51-s + 5·53-s + 2·55-s − 16·57-s + 14·59-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s + 0.377·7-s + 1/3·9-s − 0.603·11-s + 0.516·15-s − 0.727·17-s + 1.83·19-s − 0.436·21-s + 1.25·23-s − 4/5·25-s + 0.769·27-s + 1.67·29-s − 1.07·31-s + 0.696·33-s − 0.169·35-s − 0.493·37-s − 0.468·41-s + 0.304·43-s − 0.149·45-s − 1.75·47-s + 1/7·49-s + 0.840·51-s + 0.686·53-s + 0.269·55-s − 2.11·57-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 75712 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(75712\)    =    \(2^{6} \cdot 7 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(604.563\)
Root analytic conductor: \(24.5878\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 75712,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.339046485\)
\(L(\frac12)\) \(\approx\) \(1.339046485\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 9 T + p T^{2} \) 1.29.aj
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 11 T + p T^{2} \) 1.61.al
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.12997794508243, −13.45186791270141, −12.97034615220516, −12.53099651956429, −11.75097876415397, −11.57705785395173, −11.29786857912548, −10.60595431872505, −10.20110656092184, −9.631445373898882, −8.971321796220456, −8.350172818520624, −7.980823072031512, −7.148229596589536, −6.938780560092628, −6.295405583529178, −5.507333048473361, −5.128706413041670, −4.922012532425480, −4.035256443845171, −3.382103338254500, −2.759954810016404, −1.952033621858420, −0.9962068225469121, −0.5047919084793981, 0.5047919084793981, 0.9962068225469121, 1.952033621858420, 2.759954810016404, 3.382103338254500, 4.035256443845171, 4.922012532425480, 5.128706413041670, 5.507333048473361, 6.295405583529178, 6.938780560092628, 7.148229596589536, 7.980823072031512, 8.350172818520624, 8.971321796220456, 9.631445373898882, 10.20110656092184, 10.60595431872505, 11.29786857912548, 11.57705785395173, 11.75097876415397, 12.53099651956429, 12.97034615220516, 13.45186791270141, 14.12997794508243

Graph of the $Z$-function along the critical line