Properties

Label 2-72828-1.1-c1-0-25
Degree $2$
Conductor $72828$
Sign $-1$
Analytic cond. $581.534$
Root an. cond. $24.1150$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 7-s + 4·13-s + 19-s − 6·23-s − 25-s + 3·29-s + 9·31-s − 2·35-s − 6·37-s − 6·41-s + 6·43-s + 47-s + 49-s − 13·53-s − 7·59-s + 10·61-s + 8·65-s + 6·67-s + 6·71-s − 2·73-s − 16·79-s − 15·83-s + 14·89-s − 4·91-s + 2·95-s − 4·97-s + ⋯
L(s)  = 1  + 0.894·5-s − 0.377·7-s + 1.10·13-s + 0.229·19-s − 1.25·23-s − 1/5·25-s + 0.557·29-s + 1.61·31-s − 0.338·35-s − 0.986·37-s − 0.937·41-s + 0.914·43-s + 0.145·47-s + 1/7·49-s − 1.78·53-s − 0.911·59-s + 1.28·61-s + 0.992·65-s + 0.733·67-s + 0.712·71-s − 0.234·73-s − 1.80·79-s − 1.64·83-s + 1.48·89-s − 0.419·91-s + 0.205·95-s − 0.406·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72828 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72828\)    =    \(2^{2} \cdot 3^{2} \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(581.534\)
Root analytic conductor: \(24.1150\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 72828,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + T \)
17 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.04025386168388, −13.95482037600151, −13.44416234550850, −12.93307164460117, −12.38648201188819, −11.84643149324972, −11.41030260471910, −10.68226174294284, −10.29369626159000, −9.763375750729946, −9.478225287853162, −8.653360322703322, −8.347793163015824, −7.787574994873620, −6.980164409881849, −6.457466880518590, −6.054820943058662, −5.634312463634003, −4.917312554600385, −4.263532094558989, −3.643084276000016, −3.031055963425729, −2.350568635765130, −1.659425491928937, −1.054731066628609, 0, 1.054731066628609, 1.659425491928937, 2.350568635765130, 3.031055963425729, 3.643084276000016, 4.263532094558989, 4.917312554600385, 5.634312463634003, 6.054820943058662, 6.457466880518590, 6.980164409881849, 7.787574994873620, 8.347793163015824, 8.653360322703322, 9.478225287853162, 9.763375750729946, 10.29369626159000, 10.68226174294284, 11.41030260471910, 11.84643149324972, 12.38648201188819, 12.93307164460117, 13.44416234550850, 13.95482037600151, 14.04025386168388

Graph of the $Z$-function along the critical line