Properties

Label 2-72128-1.1-c1-0-25
Degree $2$
Conductor $72128$
Sign $1$
Analytic cond. $575.944$
Root an. cond. $23.9988$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s + 2·5-s + 9-s + 4·11-s − 4·15-s + 6·17-s + 8·19-s − 23-s − 25-s + 4·27-s + 2·29-s + 6·31-s − 8·33-s + 2·37-s − 8·43-s + 2·45-s + 2·47-s − 12·51-s + 6·53-s + 8·55-s − 16·57-s − 6·59-s − 10·61-s − 12·67-s + 2·69-s + 16·71-s + 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s + 0.894·5-s + 1/3·9-s + 1.20·11-s − 1.03·15-s + 1.45·17-s + 1.83·19-s − 0.208·23-s − 1/5·25-s + 0.769·27-s + 0.371·29-s + 1.07·31-s − 1.39·33-s + 0.328·37-s − 1.21·43-s + 0.298·45-s + 0.291·47-s − 1.68·51-s + 0.824·53-s + 1.07·55-s − 2.11·57-s − 0.781·59-s − 1.28·61-s − 1.46·67-s + 0.240·69-s + 1.89·71-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72128 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(72128\)    =    \(2^{6} \cdot 7^{2} \cdot 23\)
Sign: $1$
Analytic conductor: \(575.944\)
Root analytic conductor: \(23.9988\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 72128,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.655269365\)
\(L(\frac12)\) \(\approx\) \(2.655269365\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
7 \( 1 \)
23 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.98624386626560, −13.76389230572532, −13.16830312199765, −12.22508889296009, −12.06834221722547, −11.80114060718006, −11.17648648806567, −10.58976004986034, −9.938381793386307, −9.762417930202422, −9.247457137641985, −8.524824513319773, −7.890725307613183, −7.295027043341109, −6.690236403038741, −6.150668739510183, −5.814092911319539, −5.301113524831161, −4.824964463371754, −4.081018370274736, −3.280445623987661, −2.851872393987968, −1.739597649083151, −1.204983390647701, −0.6663387939217298, 0.6663387939217298, 1.204983390647701, 1.739597649083151, 2.851872393987968, 3.280445623987661, 4.081018370274736, 4.824964463371754, 5.301113524831161, 5.814092911319539, 6.150668739510183, 6.690236403038741, 7.295027043341109, 7.890725307613183, 8.524824513319773, 9.247457137641985, 9.762417930202422, 9.938381793386307, 10.58976004986034, 11.17648648806567, 11.80114060718006, 12.06834221722547, 12.22508889296009, 13.16830312199765, 13.76389230572532, 13.98624386626560

Graph of the $Z$-function along the critical line