Properties

Label 2-69360-1.1-c1-0-20
Degree $2$
Conductor $69360$
Sign $1$
Analytic cond. $553.842$
Root an. cond. $23.5338$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 5-s + 9-s + 4·11-s − 2·13-s + 15-s − 4·19-s + 25-s − 27-s + 2·29-s + 8·31-s − 4·33-s − 6·37-s + 2·39-s + 6·41-s + 4·43-s − 45-s − 7·49-s − 10·53-s − 4·55-s + 4·57-s + 4·59-s + 2·61-s + 2·65-s − 4·67-s + 6·73-s − 75-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.447·5-s + 1/3·9-s + 1.20·11-s − 0.554·13-s + 0.258·15-s − 0.917·19-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.43·31-s − 0.696·33-s − 0.986·37-s + 0.320·39-s + 0.937·41-s + 0.609·43-s − 0.149·45-s − 49-s − 1.37·53-s − 0.539·55-s + 0.529·57-s + 0.520·59-s + 0.256·61-s + 0.248·65-s − 0.488·67-s + 0.702·73-s − 0.115·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 69360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(69360\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(553.842\)
Root analytic conductor: \(23.5338\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 69360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.525387734\)
\(L(\frac12)\) \(\approx\) \(1.525387734\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 + T \)
17 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 10 T + p T^{2} \) 1.53.k
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.31161644251691, −13.67312696728252, −13.03864873304250, −12.47577196720784, −12.11804942640518, −11.75401786302816, −11.11497925384404, −10.76347626817846, −10.13187574816991, −9.589117543280083, −9.133215195451254, −8.468958214646603, −8.021789854696372, −7.365807805980195, −6.788986782714949, −6.343259536399018, −5.971855155768062, −4.969317283433908, −4.709256371027651, −4.046015761926418, −3.534833738438302, −2.722560285593829, −1.981039029331191, −1.193872338673179, −0.4686591035519483, 0.4686591035519483, 1.193872338673179, 1.981039029331191, 2.722560285593829, 3.534833738438302, 4.046015761926418, 4.709256371027651, 4.969317283433908, 5.971855155768062, 6.343259536399018, 6.788986782714949, 7.365807805980195, 8.021789854696372, 8.468958214646603, 9.133215195451254, 9.589117543280083, 10.13187574816991, 10.76347626817846, 11.11497925384404, 11.75401786302816, 12.11804942640518, 12.47577196720784, 13.03864873304250, 13.67312696728252, 14.31161644251691

Graph of the $Z$-function along the critical line