Properties

Label 2-68450-1.1-c1-0-8
Degree $2$
Conductor $68450$
Sign $-1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 2·7-s − 8-s − 2·9-s − 3·11-s − 12-s − 4·13-s + 2·14-s + 16-s − 3·17-s + 2·18-s − 5·19-s + 2·21-s + 3·22-s + 6·23-s + 24-s + 4·26-s + 5·27-s − 2·28-s − 2·31-s − 32-s + 3·33-s + 3·34-s − 2·36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.755·7-s − 0.353·8-s − 2/3·9-s − 0.904·11-s − 0.288·12-s − 1.10·13-s + 0.534·14-s + 1/4·16-s − 0.727·17-s + 0.471·18-s − 1.14·19-s + 0.436·21-s + 0.639·22-s + 1.25·23-s + 0.204·24-s + 0.784·26-s + 0.962·27-s − 0.377·28-s − 0.359·31-s − 0.176·32-s + 0.522·33-s + 0.514·34-s − 1/3·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 13 T + p T^{2} \) 1.67.an
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58608096263009, −13.91947905025749, −13.18757269776805, −12.77960690705417, −12.52264046550732, −11.76246439948684, −11.26819125718530, −10.87150840577458, −10.42536948024190, −9.838553051039779, −9.383597427199642, −8.872705551432373, −8.158458706523908, −7.959560767273526, −6.954141261172424, −6.713035025859479, −6.294149810449032, −5.418121619373889, −5.083250008622917, −4.498151041675857, −3.479136172551121, −2.899389985025451, −2.414951362198195, −1.681708023640057, −0.4819357900718883, 0, 0.4819357900718883, 1.681708023640057, 2.414951362198195, 2.899389985025451, 3.479136172551121, 4.498151041675857, 5.083250008622917, 5.418121619373889, 6.294149810449032, 6.713035025859479, 6.954141261172424, 7.959560767273526, 8.158458706523908, 8.872705551432373, 9.383597427199642, 9.838553051039779, 10.42536948024190, 10.87150840577458, 11.26819125718530, 11.76246439948684, 12.52264046550732, 12.77960690705417, 13.18757269776805, 13.91947905025749, 14.58608096263009

Graph of the $Z$-function along the critical line