Properties

Label 2-68450-1.1-c1-0-17
Degree $2$
Conductor $68450$
Sign $1$
Analytic cond. $546.576$
Root an. cond. $23.3789$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s − 2·6-s + 8-s + 9-s + 2·11-s − 2·12-s + 6·13-s + 16-s − 3·17-s + 18-s + 2·19-s + 2·22-s + 6·23-s − 2·24-s + 6·26-s + 4·27-s − 9·29-s + 10·31-s + 32-s − 4·33-s − 3·34-s + 36-s + 2·38-s − 12·39-s + 3·41-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s − 0.816·6-s + 0.353·8-s + 1/3·9-s + 0.603·11-s − 0.577·12-s + 1.66·13-s + 1/4·16-s − 0.727·17-s + 0.235·18-s + 0.458·19-s + 0.426·22-s + 1.25·23-s − 0.408·24-s + 1.17·26-s + 0.769·27-s − 1.67·29-s + 1.79·31-s + 0.176·32-s − 0.696·33-s − 0.514·34-s + 1/6·36-s + 0.324·38-s − 1.92·39-s + 0.468·41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 68450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(68450\)    =    \(2 \cdot 5^{2} \cdot 37^{2}\)
Sign: $1$
Analytic conductor: \(546.576\)
Root analytic conductor: \(23.3789\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 68450,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.419958820\)
\(L(\frac12)\) \(\approx\) \(3.419958820\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
37 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 5 T + p T^{2} \) 1.61.f
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 13 T + p T^{2} \) 1.89.n
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.05615722039347, −13.60056502944597, −13.08976307017294, −12.75663064956909, −12.05508882399126, −11.59893581950728, −11.14589118806428, −10.99829982593482, −10.42230448454168, −9.603002685624831, −9.126644707808147, −8.495075914197412, −7.992720740003034, −7.062432068831241, −6.763652229939938, −6.223648730252060, −5.723305295239297, −5.381887943098875, −4.557650676853449, −4.210802574596755, −3.468810596297231, −2.925679680937153, −2.008238031353943, −1.159313267144358, −0.6826939437498880, 0.6826939437498880, 1.159313267144358, 2.008238031353943, 2.925679680937153, 3.468810596297231, 4.210802574596755, 4.557650676853449, 5.381887943098875, 5.723305295239297, 6.223648730252060, 6.763652229939938, 7.062432068831241, 7.992720740003034, 8.495075914197412, 9.126644707808147, 9.603002685624831, 10.42230448454168, 10.99829982593482, 11.14589118806428, 11.59893581950728, 12.05508882399126, 12.75663064956909, 13.08976307017294, 13.60056502944597, 14.05615722039347

Graph of the $Z$-function along the critical line