Properties

Label 2-6370-1.1-c1-0-144
Degree $2$
Conductor $6370$
Sign $-1$
Analytic cond. $50.8647$
Root an. cond. $7.13194$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 2·3-s + 4-s + 5-s − 2·6-s − 8-s + 9-s − 10-s + 2·12-s − 13-s + 2·15-s + 16-s − 18-s − 2·19-s + 20-s − 6·23-s − 2·24-s + 25-s + 26-s − 4·27-s + 6·29-s − 2·30-s − 8·31-s − 32-s + 36-s − 10·37-s + 2·38-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.447·5-s − 0.816·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.577·12-s − 0.277·13-s + 0.516·15-s + 1/4·16-s − 0.235·18-s − 0.458·19-s + 0.223·20-s − 1.25·23-s − 0.408·24-s + 1/5·25-s + 0.196·26-s − 0.769·27-s + 1.11·29-s − 0.365·30-s − 1.43·31-s − 0.176·32-s + 1/6·36-s − 1.64·37-s + 0.324·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6370 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6370 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6370\)    =    \(2 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(50.8647\)
Root analytic conductor: \(7.13194\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6370,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.81825260144820625840388621416, −7.26608174752744929020953618626, −6.36040251253005985160201634051, −5.74878216768671345064115504366, −4.72406516814070163920804794977, −3.75632439236673924978307703047, −2.99876038136684647044387270167, −2.21195948170617702194855649284, −1.57911069803828806296778237852, 0, 1.57911069803828806296778237852, 2.21195948170617702194855649284, 2.99876038136684647044387270167, 3.75632439236673924978307703047, 4.72406516814070163920804794977, 5.74878216768671345064115504366, 6.36040251253005985160201634051, 7.26608174752744929020953618626, 7.81825260144820625840388621416

Graph of the $Z$-function along the critical line