Properties

Label 2-6210-1.1-c1-0-116
Degree $2$
Conductor $6210$
Sign $-1$
Analytic cond. $49.5870$
Root an. cond. $7.04181$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 5-s + 7-s + 8-s + 10-s − 11-s − 6·13-s + 14-s + 16-s − 2·17-s − 6·19-s + 20-s − 22-s − 23-s + 25-s − 6·26-s + 28-s + 7·29-s + 32-s − 2·34-s + 35-s − 2·37-s − 6·38-s + 40-s − 6·41-s + 2·43-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.447·5-s + 0.377·7-s + 0.353·8-s + 0.316·10-s − 0.301·11-s − 1.66·13-s + 0.267·14-s + 1/4·16-s − 0.485·17-s − 1.37·19-s + 0.223·20-s − 0.213·22-s − 0.208·23-s + 1/5·25-s − 1.17·26-s + 0.188·28-s + 1.29·29-s + 0.176·32-s − 0.342·34-s + 0.169·35-s − 0.328·37-s − 0.973·38-s + 0.158·40-s − 0.937·41-s + 0.304·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 6210 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(6210\)    =    \(2 \cdot 3^{3} \cdot 5 \cdot 23\)
Sign: $-1$
Analytic conductor: \(49.5870\)
Root analytic conductor: \(7.04181\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 6210,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 - T \)
23 \( 1 + T \)
good7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 13 T + p T^{2} \) 1.71.n
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.62049549965919591404158224202, −6.79896923241648647833509554503, −6.33079932214340623922196767951, −5.40130024458059010048162245929, −4.74199772798651453374853346578, −4.33811674090356828550985286797, −3.08797240706266296139631090562, −2.39905437978870241941973946650, −1.67349036542362161280137807725, 0, 1.67349036542362161280137807725, 2.39905437978870241941973946650, 3.08797240706266296139631090562, 4.33811674090356828550985286797, 4.74199772798651453374853346578, 5.40130024458059010048162245929, 6.33079932214340623922196767951, 6.79896923241648647833509554503, 7.62049549965919591404158224202

Graph of the $Z$-function along the critical line