Properties

Label 2-608-1.1-c1-0-17
Degree $2$
Conductor $608$
Sign $-1$
Analytic cond. $4.85490$
Root an. cond. $2.20338$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·5-s − 5·7-s − 3·9-s − 5·11-s − 4·13-s − 3·17-s + 19-s + 4·25-s + 10·31-s − 15·35-s + 8·37-s − 5·43-s − 9·45-s + 5·47-s + 18·49-s − 6·53-s − 15·55-s − 10·59-s − 5·61-s + 15·63-s − 12·65-s − 10·67-s + 10·71-s − 11·73-s + 25·77-s − 10·79-s + 9·81-s + ⋯
L(s)  = 1  + 1.34·5-s − 1.88·7-s − 9-s − 1.50·11-s − 1.10·13-s − 0.727·17-s + 0.229·19-s + 4/5·25-s + 1.79·31-s − 2.53·35-s + 1.31·37-s − 0.762·43-s − 1.34·45-s + 0.729·47-s + 18/7·49-s − 0.824·53-s − 2.02·55-s − 1.30·59-s − 0.640·61-s + 1.88·63-s − 1.48·65-s − 1.22·67-s + 1.18·71-s − 1.28·73-s + 2.84·77-s − 1.12·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 608 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(608\)    =    \(2^{5} \cdot 19\)
Sign: $-1$
Analytic conductor: \(4.85490\)
Root analytic conductor: \(2.20338\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 608,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 - T \)
good3 \( 1 + p T^{2} \)
5 \( 1 - 3 T + p T^{2} \)
7 \( 1 + 5 T + p T^{2} \)
11 \( 1 + 5 T + p T^{2} \)
13 \( 1 + 4 T + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
23 \( 1 + p T^{2} \)
29 \( 1 + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 8 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 5 T + p T^{2} \)
47 \( 1 - 5 T + p T^{2} \)
53 \( 1 + 6 T + p T^{2} \)
59 \( 1 + 10 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 + 10 T + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 11 T + p T^{2} \)
79 \( 1 + 10 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 10 T + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.932004732623641143909868708294, −9.660921116637740874206419270015, −8.657607798255729945382040282859, −7.44006890990342389833161815303, −6.31101389249620377592400624257, −5.86241105176971199112628899877, −4.80406574906688719619549586116, −2.88174055098079092197095933553, −2.57940326354661234114682009216, 0, 2.57940326354661234114682009216, 2.88174055098079092197095933553, 4.80406574906688719619549586116, 5.86241105176971199112628899877, 6.31101389249620377592400624257, 7.44006890990342389833161815303, 8.657607798255729945382040282859, 9.660921116637740874206419270015, 9.932004732623641143909868708294

Graph of the $Z$-function along the critical line