Properties

Label 2-5808-1.1-c1-0-71
Degree $2$
Conductor $5808$
Sign $-1$
Analytic cond. $46.3771$
Root an. cond. $6.81007$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 2·7-s + 9-s + 4·13-s + 2·15-s − 2·17-s − 2·19-s − 2·21-s − 25-s − 27-s − 10·29-s − 4·35-s + 10·37-s − 4·39-s − 6·41-s + 10·43-s − 2·45-s − 4·47-s − 3·49-s + 2·51-s + 2·53-s + 2·57-s + 8·59-s − 8·61-s + 2·63-s − 8·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.755·7-s + 1/3·9-s + 1.10·13-s + 0.516·15-s − 0.485·17-s − 0.458·19-s − 0.436·21-s − 1/5·25-s − 0.192·27-s − 1.85·29-s − 0.676·35-s + 1.64·37-s − 0.640·39-s − 0.937·41-s + 1.52·43-s − 0.298·45-s − 0.583·47-s − 3/7·49-s + 0.280·51-s + 0.274·53-s + 0.264·57-s + 1.04·59-s − 1.02·61-s + 0.251·63-s − 0.992·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5808 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5808\)    =    \(2^{4} \cdot 3 \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(46.3771\)
Root analytic conductor: \(6.81007\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5808,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 8 T + p T^{2} \) 1.61.i
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 14 T + p T^{2} \) 1.79.o
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.73610336574236976573376335960, −7.16692776135213133902738894080, −6.20884313834646314686074187588, −5.70413209743629906474552918387, −4.72791974658495136847972960614, −4.13204970502948619360240898044, −3.50402301340044661265486789006, −2.19677800508584066488741645677, −1.22044698778936646284035063996, 0, 1.22044698778936646284035063996, 2.19677800508584066488741645677, 3.50402301340044661265486789006, 4.13204970502948619360240898044, 4.72791974658495136847972960614, 5.70413209743629906474552918387, 6.20884313834646314686074187588, 7.16692776135213133902738894080, 7.73610336574236976573376335960

Graph of the $Z$-function along the critical line