Properties

Label 2-572e2-1.1-c1-0-126
Degree $2$
Conductor $327184$
Sign $1$
Analytic cond. $2612.57$
Root an. cond. $51.1133$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 3·9-s − 2·17-s − 6·19-s − 3·23-s − 4·25-s − 3·29-s − 2·31-s + 35-s − 6·37-s + 3·41-s + 7·43-s − 3·45-s − 6·49-s − 4·53-s + 3·59-s + 61-s − 3·63-s − 13·67-s − 10·71-s − 11·73-s − 8·79-s + 9·81-s − 4·83-s − 2·85-s + 12·89-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 9-s − 0.485·17-s − 1.37·19-s − 0.625·23-s − 4/5·25-s − 0.557·29-s − 0.359·31-s + 0.169·35-s − 0.986·37-s + 0.468·41-s + 1.06·43-s − 0.447·45-s − 6/7·49-s − 0.549·53-s + 0.390·59-s + 0.128·61-s − 0.377·63-s − 1.58·67-s − 1.18·71-s − 1.28·73-s − 0.900·79-s + 81-s − 0.439·83-s − 0.216·85-s + 1.27·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(327184\)    =    \(2^{4} \cdot 11^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2612.57\)
Root analytic conductor: \(51.1133\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 327184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
11 \( 1 \)
13 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 11 T + p T^{2} \) 1.73.l
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.20277878787163, −12.69190565479956, −11.95187365607224, −11.80751670103576, −11.19093485444201, −10.83477123352989, −10.35599566231158, −9.989230719955165, −9.202002903041665, −9.001506556140346, −8.532886411251115, −8.074180576280877, −7.507909579391992, −7.141172774980814, −6.283379761515973, −6.063523208734356, −5.735391274748204, −5.034916926205293, −4.552041637208296, −4.050227455891648, −3.466461134263466, −2.857218967342401, −2.153142029348112, −1.965390444232949, −1.201216950918740, 0, 0, 1.201216950918740, 1.965390444232949, 2.153142029348112, 2.857218967342401, 3.466461134263466, 4.050227455891648, 4.552041637208296, 5.034916926205293, 5.735391274748204, 6.063523208734356, 6.283379761515973, 7.141172774980814, 7.507909579391992, 8.074180576280877, 8.532886411251115, 9.001506556140346, 9.202002903041665, 9.989230719955165, 10.35599566231158, 10.83477123352989, 11.19093485444201, 11.80751670103576, 11.95187365607224, 12.69190565479956, 13.20277878787163

Graph of the $Z$-function along the critical line