| L(s)  = 1  |         + 5-s     + 7-s     − 3·9-s                 − 2·17-s     − 6·19-s         − 3·23-s     − 4·25-s         − 3·29-s     − 2·31-s         + 35-s     − 6·37-s         + 3·41-s     + 7·43-s     − 3·45-s         − 6·49-s         − 4·53-s             + 3·59-s     + 61-s     − 3·63-s         − 13·67-s         − 10·71-s     − 11·73-s             − 8·79-s     + 9·81-s     − 4·83-s     − 2·85-s         + 12·89-s  + ⋯ | 
 
| L(s)  = 1  |         + 0.447·5-s     + 0.377·7-s     − 9-s                 − 0.485·17-s     − 1.37·19-s         − 0.625·23-s     − 4/5·25-s         − 0.557·29-s     − 0.359·31-s         + 0.169·35-s     − 0.986·37-s         + 0.468·41-s     + 1.06·43-s     − 0.447·45-s         − 6/7·49-s         − 0.549·53-s             + 0.390·59-s     + 0.128·61-s     − 0.377·63-s         − 1.58·67-s         − 1.18·71-s     − 1.28·73-s             − 0.900·79-s     + 81-s     − 0.439·83-s     − 0.216·85-s         + 1.27·89-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 327184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 11 |  \( 1 \)  |    | 
 | 13 |  \( 1 \)  |    | 
| good | 3 |  \( 1 + p T^{2} \)  |  1.3.a  | 
 | 5 |  \( 1 - T + p T^{2} \)  |  1.5.ab  | 
 | 7 |  \( 1 - T + p T^{2} \)  |  1.7.ab  | 
 | 17 |  \( 1 + 2 T + p T^{2} \)  |  1.17.c  | 
 | 19 |  \( 1 + 6 T + p T^{2} \)  |  1.19.g  | 
 | 23 |  \( 1 + 3 T + p T^{2} \)  |  1.23.d  | 
 | 29 |  \( 1 + 3 T + p T^{2} \)  |  1.29.d  | 
 | 31 |  \( 1 + 2 T + p T^{2} \)  |  1.31.c  | 
 | 37 |  \( 1 + 6 T + p T^{2} \)  |  1.37.g  | 
 | 41 |  \( 1 - 3 T + p T^{2} \)  |  1.41.ad  | 
 | 43 |  \( 1 - 7 T + p T^{2} \)  |  1.43.ah  | 
 | 47 |  \( 1 + p T^{2} \)  |  1.47.a  | 
 | 53 |  \( 1 + 4 T + p T^{2} \)  |  1.53.e  | 
 | 59 |  \( 1 - 3 T + p T^{2} \)  |  1.59.ad  | 
 | 61 |  \( 1 - T + p T^{2} \)  |  1.61.ab  | 
 | 67 |  \( 1 + 13 T + p T^{2} \)  |  1.67.n  | 
 | 71 |  \( 1 + 10 T + p T^{2} \)  |  1.71.k  | 
 | 73 |  \( 1 + 11 T + p T^{2} \)  |  1.73.l  | 
 | 79 |  \( 1 + 8 T + p T^{2} \)  |  1.79.i  | 
 | 83 |  \( 1 + 4 T + p T^{2} \)  |  1.83.e  | 
 | 89 |  \( 1 - 12 T + p T^{2} \)  |  1.89.am  | 
 | 97 |  \( 1 - 14 T + p T^{2} \)  |  1.97.ao  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.20277878787163, −12.69190565479956, −11.95187365607224, −11.80751670103576, −11.19093485444201, −10.83477123352989, −10.35599566231158, −9.989230719955165, −9.202002903041665, −9.001506556140346, −8.532886411251115, −8.074180576280877, −7.507909579391992, −7.141172774980814, −6.283379761515973, −6.063523208734356, −5.735391274748204, −5.034916926205293, −4.552041637208296, −4.050227455891648, −3.466461134263466, −2.857218967342401, −2.153142029348112, −1.965390444232949, −1.201216950918740, 0, 0, 
1.201216950918740, 1.965390444232949, 2.153142029348112, 2.857218967342401, 3.466461134263466, 4.050227455891648, 4.552041637208296, 5.034916926205293, 5.735391274748204, 6.063523208734356, 6.283379761515973, 7.141172774980814, 7.507909579391992, 8.074180576280877, 8.532886411251115, 9.001506556140346, 9.202002903041665, 9.989230719955165, 10.35599566231158, 10.83477123352989, 11.19093485444201, 11.80751670103576, 11.95187365607224, 12.69190565479956, 13.20277878787163