Properties

Label 2-5586-1.1-c1-0-104
Degree $2$
Conductor $5586$
Sign $-1$
Analytic cond. $44.6044$
Root an. cond. $6.67865$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s − 5·11-s + 12-s + 6·13-s + 15-s + 16-s + 2·17-s − 18-s + 19-s + 20-s + 5·22-s − 9·23-s − 24-s − 4·25-s − 6·26-s + 27-s − 8·29-s − 30-s + 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 1.50·11-s + 0.288·12-s + 1.66·13-s + 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s + 1.06·22-s − 1.87·23-s − 0.204·24-s − 4/5·25-s − 1.17·26-s + 0.192·27-s − 1.48·29-s − 0.182·30-s + 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5586 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5586\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(44.6044\)
Root analytic conductor: \(6.67865\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5586,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 - T + p T^{2} \) 1.5.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 + 8 T + p T^{2} \) 1.29.i
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + T + p T^{2} \) 1.47.b
53 \( 1 + 8 T + p T^{2} \) 1.53.i
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 11 T + p T^{2} \) 1.83.al
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.893214339425903175864012821762, −7.47462993767186543952325946572, −6.16920664408130467210566040493, −5.96904321649093420221628889363, −4.97086522984237863596677543174, −3.80005450215509130217112965369, −3.18100712092445641569787101280, −2.13877068104695033726734903958, −1.50966308789600413052860012960, 0, 1.50966308789600413052860012960, 2.13877068104695033726734903958, 3.18100712092445641569787101280, 3.80005450215509130217112965369, 4.97086522984237863596677543174, 5.96904321649093420221628889363, 6.16920664408130467210566040493, 7.47462993767186543952325946572, 7.893214339425903175864012821762

Graph of the $Z$-function along the critical line