Properties

Label 2-55770-1.1-c1-0-26
Degree $2$
Conductor $55770$
Sign $1$
Analytic cond. $445.325$
Root an. cond. $21.1027$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s − 2·7-s + 8-s + 9-s − 10-s + 11-s + 12-s − 2·14-s − 15-s + 16-s + 6·17-s + 18-s + 4·19-s − 20-s − 2·21-s + 22-s + 24-s + 25-s + 27-s − 2·28-s − 30-s − 2·31-s + 32-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.301·11-s + 0.288·12-s − 0.534·14-s − 0.258·15-s + 1/4·16-s + 1.45·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s − 0.436·21-s + 0.213·22-s + 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.377·28-s − 0.182·30-s − 0.359·31-s + 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55770 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55770\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(445.325\)
Root analytic conductor: \(21.1027\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55770,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.911438598\)
\(L(\frac12)\) \(\approx\) \(4.911438598\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 4 T + p T^{2} \) 1.37.ae
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 12 T + p T^{2} \) 1.53.am
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.44139867351052, −13.88547700362388, −13.43900674712795, −12.91894602697948, −12.34185151975424, −12.04547381159135, −11.51715765517040, −10.86505925815301, −10.18689228148158, −9.859908116172132, −9.204215687635230, −8.761483684269222, −7.893624567032694, −7.582249655046620, −7.117398159189260, −6.382367399997987, −5.897240323734436, −5.254278448601842, −4.657240468617697, −3.869540352783071, −3.471874355154971, −3.039121492621753, −2.336307135713256, −1.407384729929827, −0.6852012423304386, 0.6852012423304386, 1.407384729929827, 2.336307135713256, 3.039121492621753, 3.471874355154971, 3.869540352783071, 4.657240468617697, 5.254278448601842, 5.897240323734436, 6.382367399997987, 7.117398159189260, 7.582249655046620, 7.893624567032694, 8.761483684269222, 9.204215687635230, 9.859908116172132, 10.18689228148158, 10.86505925815301, 11.51715765517040, 12.04547381159135, 12.34185151975424, 12.91894602697948, 13.43900674712795, 13.88547700362388, 14.44139867351052

Graph of the $Z$-function along the critical line