Properties

Label 2-552e2-1.1-c1-0-133
Degree $2$
Conductor $304704$
Sign $-1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 2·7-s + 2·11-s + 5·13-s + 2·17-s + 6·19-s − 4·25-s − 5·29-s − 2·35-s − 2·37-s + 9·41-s − 8·43-s − 10·47-s − 3·49-s − 9·53-s − 2·55-s − 10·59-s + 13·61-s − 5·65-s − 8·67-s + 2·71-s + 3·73-s + 4·77-s + 12·83-s − 2·85-s − 7·89-s + 10·91-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.755·7-s + 0.603·11-s + 1.38·13-s + 0.485·17-s + 1.37·19-s − 4/5·25-s − 0.928·29-s − 0.338·35-s − 0.328·37-s + 1.40·41-s − 1.21·43-s − 1.45·47-s − 3/7·49-s − 1.23·53-s − 0.269·55-s − 1.30·59-s + 1.66·61-s − 0.620·65-s − 0.977·67-s + 0.237·71-s + 0.351·73-s + 0.455·77-s + 1.31·83-s − 0.216·85-s − 0.741·89-s + 1.04·91-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $-1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + T + p T^{2} \) 1.5.b
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 7 T + p T^{2} \) 1.89.h
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79346233193166, −12.47970165185813, −11.75678498546103, −11.52568212760554, −11.20645707254582, −10.82770627392451, −10.10237195268871, −9.626319169323060, −9.279550795143040, −8.714520565693816, −8.182042061967078, −7.781657401021367, −7.571879145528361, −6.754564827517153, −6.381192221291052, −5.816764527011868, −5.294118877168904, −4.905005302021882, −4.155166400488248, −3.769206685452597, −3.338263049097318, −2.794728393934411, −1.709995067426943, −1.553816485923515, −0.9004722393414709, 0, 0.9004722393414709, 1.553816485923515, 1.709995067426943, 2.794728393934411, 3.338263049097318, 3.769206685452597, 4.155166400488248, 4.905005302021882, 5.294118877168904, 5.816764527011868, 6.381192221291052, 6.754564827517153, 7.571879145528361, 7.781657401021367, 8.182042061967078, 8.714520565693816, 9.279550795143040, 9.626319169323060, 10.10237195268871, 10.82770627392451, 11.20645707254582, 11.52568212760554, 11.75678498546103, 12.47970165185813, 12.79346233193166

Graph of the $Z$-function along the critical line