Properties

Label 304704.cn
Number of curves $1$
Conductor $304704$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 304704.cn1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 2 T + 11 T^{2}\) 1.11.ac
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.cn do not have complex multiplication.

Modular form 304704.2.a.cn

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + 2 q^{7} + 2 q^{11} + 5 q^{13} + 2 q^{17} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 304704.cn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.cn1 304704cn1 \([0, 0, 0, -6348, 262384]\) \(-2116\) \(-13369611976704\) \([]\) \(516096\) \(1.2246\) \(\Gamma_0(N)\)-optimal