Properties

Label 2-552e2-1.1-c1-0-10
Degree $2$
Conductor $304704$
Sign $1$
Analytic cond. $2433.07$
Root an. cond. $49.3261$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 2·7-s + 4·11-s − 4·13-s − 7·17-s − 3·19-s − 25-s − 4·29-s − 6·31-s + 4·35-s + 2·37-s − 6·41-s − 5·43-s − 10·47-s − 3·49-s + 8·55-s + 5·59-s − 4·61-s − 8·65-s − 5·67-s + 14·71-s + 15·73-s + 8·77-s − 12·79-s − 15·83-s − 14·85-s − 10·89-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.755·7-s + 1.20·11-s − 1.10·13-s − 1.69·17-s − 0.688·19-s − 1/5·25-s − 0.742·29-s − 1.07·31-s + 0.676·35-s + 0.328·37-s − 0.937·41-s − 0.762·43-s − 1.45·47-s − 3/7·49-s + 1.07·55-s + 0.650·59-s − 0.512·61-s − 0.992·65-s − 0.610·67-s + 1.66·71-s + 1.75·73-s + 0.911·77-s − 1.35·79-s − 1.64·83-s − 1.51·85-s − 1.05·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 304704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(304704\)    =    \(2^{6} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(2433.07\)
Root analytic conductor: \(49.3261\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 304704,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.093108438\)
\(L(\frac12)\) \(\approx\) \(1.093108438\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 7 T + p T^{2} \) 1.17.h
19 \( 1 + 3 T + p T^{2} \) 1.19.d
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 5 T + p T^{2} \) 1.59.af
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 15 T + p T^{2} \) 1.73.ap
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63961722066279, −12.33098033401997, −11.56532705446983, −11.26596575066151, −11.08408840732021, −10.29991082449647, −9.830827695701436, −9.486473914943427, −9.084942374969898, −8.504150659919726, −8.220717399945583, −7.471800379498011, −6.978283546333245, −6.532487835678221, −6.280341980603963, −5.382329092488441, −5.231991253224026, −4.490363014688228, −4.191436734187408, −3.564147538907630, −2.797818416503699, −2.112578815015686, −1.827294253451408, −1.419370885710074, −0.2507158676354670, 0.2507158676354670, 1.419370885710074, 1.827294253451408, 2.112578815015686, 2.797818416503699, 3.564147538907630, 4.191436734187408, 4.490363014688228, 5.231991253224026, 5.382329092488441, 6.280341980603963, 6.532487835678221, 6.978283546333245, 7.471800379498011, 8.220717399945583, 8.504150659919726, 9.084942374969898, 9.486473914943427, 9.830827695701436, 10.29991082449647, 11.08408840732021, 11.26596575066151, 11.56532705446983, 12.33098033401997, 12.63961722066279

Graph of the $Z$-function along the critical line