Properties

Label 304704.fr
Number of curves $1$
Conductor $304704$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 304704.fr1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 304704.fr do not have complex multiplication.

Modular form 304704.2.a.fr

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} + 2 q^{7} + 4 q^{11} - 4 q^{13} - 7 q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 304704.fr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
304704.fr1 304704fr1 \([0, 0, 0, 276, -10672]\) \(46\) \(-50546737152\) \([]\) \(230400\) \(0.73414\) \(\Gamma_0(N)\)-optimal