Properties

Label 2-550-1.1-c1-0-1
Degree $2$
Conductor $550$
Sign $1$
Analytic cond. $4.39177$
Root an. cond. $2.09565$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 2·3-s + 4-s + 2·6-s − 8-s + 9-s + 11-s − 2·12-s − 3·13-s + 16-s + 4·17-s − 18-s − 19-s − 22-s − 3·23-s + 2·24-s + 3·26-s + 4·27-s + 5·29-s − 3·31-s − 32-s − 2·33-s − 4·34-s + 36-s + 12·37-s + 38-s + 6·39-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.816·6-s − 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.577·12-s − 0.832·13-s + 1/4·16-s + 0.970·17-s − 0.235·18-s − 0.229·19-s − 0.213·22-s − 0.625·23-s + 0.408·24-s + 0.588·26-s + 0.769·27-s + 0.928·29-s − 0.538·31-s − 0.176·32-s − 0.348·33-s − 0.685·34-s + 1/6·36-s + 1.97·37-s + 0.162·38-s + 0.960·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(550\)    =    \(2 \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(4.39177\)
Root analytic conductor: \(2.09565\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6304349988\)
\(L(\frac12)\) \(\approx\) \(0.6304349988\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + 3 T + p T^{2} \) 1.31.d
37 \( 1 - 12 T + p T^{2} \) 1.37.am
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 + 5 T + p T^{2} \) 1.71.f
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.72037843153002036672943444974, −10.04169591442891944937637527504, −9.191320515814848706074123387600, −8.050464216181852944362214228705, −7.20142084928457141587669449399, −6.18203033874227666822982791381, −5.49045025008948680682281531457, −4.26001084862830066585868170883, −2.59263588095010113447027386467, −0.830971576711547037902968231013, 0.830971576711547037902968231013, 2.59263588095010113447027386467, 4.26001084862830066585868170883, 5.49045025008948680682281531457, 6.18203033874227666822982791381, 7.20142084928457141587669449399, 8.050464216181852944362214228705, 9.191320515814848706074123387600, 10.04169591442891944937637527504, 10.72037843153002036672943444974

Graph of the $Z$-function along the critical line