Properties

Label 2-54450-1.1-c1-0-140
Degree $2$
Conductor $54450$
Sign $-1$
Analytic cond. $434.785$
Root an. cond. $20.8515$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 6·13-s + 16-s − 6·17-s + 6·19-s + 6·23-s − 6·26-s − 6·29-s + 4·31-s + 32-s − 6·34-s + 2·37-s + 6·38-s − 6·41-s − 6·43-s + 6·46-s + 6·47-s − 7·49-s − 6·52-s − 12·53-s − 6·58-s + 12·59-s + 6·61-s + 4·62-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 1.66·13-s + 1/4·16-s − 1.45·17-s + 1.37·19-s + 1.25·23-s − 1.17·26-s − 1.11·29-s + 0.718·31-s + 0.176·32-s − 1.02·34-s + 0.328·37-s + 0.973·38-s − 0.937·41-s − 0.914·43-s + 0.884·46-s + 0.875·47-s − 49-s − 0.832·52-s − 1.64·53-s − 0.787·58-s + 1.56·59-s + 0.768·61-s + 0.508·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54450 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54450\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $-1$
Analytic conductor: \(434.785\)
Root analytic conductor: \(20.8515\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 54450,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 12 T + p T^{2} \) 1.73.am
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.74152787657212, −14.14812452409993, −13.61980584102549, −13.17583348970797, −12.71286896088234, −12.20788390118889, −11.51316047636743, −11.37610699955251, −10.70685972741240, −9.972996633911972, −9.599022071730238, −9.085787761925486, −8.378125057242573, −7.653144901634002, −7.289014570526736, −6.691572841070852, −6.305002204535672, −5.253692977284114, −5.060997706156209, −4.625065683097846, −3.723527594937140, −3.208491907291758, −2.459451577456549, −2.029720025250196, −1.007059892685340, 0, 1.007059892685340, 2.029720025250196, 2.459451577456549, 3.208491907291758, 3.723527594937140, 4.625065683097846, 5.060997706156209, 5.253692977284114, 6.305002204535672, 6.691572841070852, 7.289014570526736, 7.653144901634002, 8.378125057242573, 9.085787761925486, 9.599022071730238, 9.972996633911972, 10.70685972741240, 11.37610699955251, 11.51316047636743, 12.20788390118889, 12.71286896088234, 13.17583348970797, 13.61980584102549, 14.14812452409993, 14.74152787657212

Graph of the $Z$-function along the critical line