Properties

Label 2-51408-1.1-c1-0-12
Degree $2$
Conductor $51408$
Sign $1$
Analytic cond. $410.494$
Root an. cond. $20.2606$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 7-s + 3·11-s − 2·13-s − 17-s − 5·19-s − 8·23-s − 4·25-s + 3·29-s − 4·31-s − 35-s + 8·37-s + 2·41-s + 12·43-s − 4·47-s + 49-s + 6·53-s − 3·55-s + 14·59-s − 10·61-s + 2·65-s − 15·67-s − 71-s + 14·73-s + 3·77-s + 10·79-s + 14·83-s + ⋯
L(s)  = 1  − 0.447·5-s + 0.377·7-s + 0.904·11-s − 0.554·13-s − 0.242·17-s − 1.14·19-s − 1.66·23-s − 4/5·25-s + 0.557·29-s − 0.718·31-s − 0.169·35-s + 1.31·37-s + 0.312·41-s + 1.82·43-s − 0.583·47-s + 1/7·49-s + 0.824·53-s − 0.404·55-s + 1.82·59-s − 1.28·61-s + 0.248·65-s − 1.83·67-s − 0.118·71-s + 1.63·73-s + 0.341·77-s + 1.12·79-s + 1.53·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 51408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(51408\)    =    \(2^{4} \cdot 3^{3} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(410.494\)
Root analytic conductor: \(20.2606\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 51408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.441708109\)
\(L(\frac12)\) \(\approx\) \(1.441708109\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good5 \( 1 + T + p T^{2} \) 1.5.b
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 12 T + p T^{2} \) 1.43.am
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 15 T + p T^{2} \) 1.67.p
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 + 18 T + p T^{2} \) 1.89.s
97 \( 1 + 8 T + p T^{2} \) 1.97.i
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.54833020659755, −14.04541264972997, −13.55751873919542, −12.89028949696415, −12.29289217908313, −11.98571828923930, −11.50279090423334, −10.86175078164328, −10.49981450753775, −9.696344839932115, −9.368634016847940, −8.721974833044816, −8.087261280133763, −7.764408679142260, −7.143457312040837, −6.406034763003355, −6.062071711283339, −5.367520268370120, −4.546204422922526, −3.998061012617921, −3.865694156734276, −2.627331709293041, −2.194385413528403, −1.398750260926403, −0.4221072572761915, 0.4221072572761915, 1.398750260926403, 2.194385413528403, 2.627331709293041, 3.865694156734276, 3.998061012617921, 4.546204422922526, 5.367520268370120, 6.062071711283339, 6.406034763003355, 7.143457312040837, 7.764408679142260, 8.087261280133763, 8.721974833044816, 9.368634016847940, 9.696344839932115, 10.49981450753775, 10.86175078164328, 11.50279090423334, 11.98571828923930, 12.29289217908313, 12.89028949696415, 13.55751873919542, 14.04541264972997, 14.54833020659755

Graph of the $Z$-function along the critical line