Properties

Label 2-5100-1.1-c1-0-38
Degree $2$
Conductor $5100$
Sign $-1$
Analytic cond. $40.7237$
Root an. cond. $6.38151$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·7-s + 9-s − 2·11-s + 5·13-s + 17-s − 7·19-s − 3·21-s + 4·23-s + 27-s − 4·29-s + 5·31-s − 2·33-s − 6·37-s + 5·39-s + 2·41-s − 5·43-s − 12·47-s + 2·49-s + 51-s − 6·53-s − 7·57-s + 10·59-s + 13·61-s − 3·63-s − 5·67-s + 4·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.13·7-s + 1/3·9-s − 0.603·11-s + 1.38·13-s + 0.242·17-s − 1.60·19-s − 0.654·21-s + 0.834·23-s + 0.192·27-s − 0.742·29-s + 0.898·31-s − 0.348·33-s − 0.986·37-s + 0.800·39-s + 0.312·41-s − 0.762·43-s − 1.75·47-s + 2/7·49-s + 0.140·51-s − 0.824·53-s − 0.927·57-s + 1.30·59-s + 1.66·61-s − 0.377·63-s − 0.610·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(40.7237\)
Root analytic conductor: \(6.38151\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5100,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
19 \( 1 + 7 T + p T^{2} \) 1.19.h
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 5 T + p T^{2} \) 1.43.f
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 + 5 T + p T^{2} \) 1.67.f
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + T + p T^{2} \) 1.97.b
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.137184218715327838873003326071, −6.99412819668853863894480711178, −6.53829584423759425873693922697, −5.83474504309947961924395003429, −4.87583797334088801429137897462, −3.88873162191321579918528201636, −3.32808273731244561883285330635, −2.53540868354575814051311845420, −1.44134124524462685323064662958, 0, 1.44134124524462685323064662958, 2.53540868354575814051311845420, 3.32808273731244561883285330635, 3.88873162191321579918528201636, 4.87583797334088801429137897462, 5.83474504309947961924395003429, 6.53829584423759425873693922697, 6.99412819668853863894480711178, 8.137184218715327838873003326071

Graph of the $Z$-function along the critical line