| L(s)  = 1  |     + 3-s             + 9-s     − 2·11-s     − 5·13-s         + 2·17-s     + 3·19-s         − 2·23-s     − 5·25-s     + 27-s     + 8·29-s     − 31-s     − 2·33-s         − 5·37-s     − 5·39-s     − 2·41-s     − 7·43-s         − 8·47-s         + 2·51-s     − 2·53-s         + 3·57-s     + 10·59-s     + 2·61-s             + 11·67-s     − 2·69-s     − 12·71-s     + 3·73-s     − 5·75-s  + ⋯ | 
 
| L(s)  = 1  |     + 0.577·3-s             + 1/3·9-s     − 0.603·11-s     − 1.38·13-s         + 0.485·17-s     + 0.688·19-s         − 0.417·23-s     − 25-s     + 0.192·27-s     + 1.48·29-s     − 0.179·31-s     − 0.348·33-s         − 0.821·37-s     − 0.800·39-s     − 0.312·41-s     − 1.06·43-s         − 1.16·47-s         + 0.280·51-s     − 0.274·53-s         + 0.397·57-s     + 1.30·59-s     + 0.256·61-s             + 1.34·67-s     − 0.240·69-s     − 1.42·71-s     + 0.351·73-s     − 0.577·75-s  + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(1)\)  | 
            \(=\) | 
             \(0\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(=\) | 
      
       \(0\)  | 
    
    
        
      |  \(L(\frac{3}{2})\)  | 
             | 
       not available  | 
          
    
      |  \(L(1)\)  | 
             | 
       not available  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 |  \( 1 \)  |    | 
 | 3 |  \( 1 - T \)  |    | 
 | 7 |  \( 1 \)  |    | 
| good | 5 |  \( 1 + p T^{2} \)  |  1.5.a  | 
 | 11 |  \( 1 + 2 T + p T^{2} \)  |  1.11.c  | 
 | 13 |  \( 1 + 5 T + p T^{2} \)  |  1.13.f  | 
 | 17 |  \( 1 - 2 T + p T^{2} \)  |  1.17.ac  | 
 | 19 |  \( 1 - 3 T + p T^{2} \)  |  1.19.ad  | 
 | 23 |  \( 1 + 2 T + p T^{2} \)  |  1.23.c  | 
 | 29 |  \( 1 - 8 T + p T^{2} \)  |  1.29.ai  | 
 | 31 |  \( 1 + T + p T^{2} \)  |  1.31.b  | 
 | 37 |  \( 1 + 5 T + p T^{2} \)  |  1.37.f  | 
 | 41 |  \( 1 + 2 T + p T^{2} \)  |  1.41.c  | 
 | 43 |  \( 1 + 7 T + p T^{2} \)  |  1.43.h  | 
 | 47 |  \( 1 + 8 T + p T^{2} \)  |  1.47.i  | 
 | 53 |  \( 1 + 2 T + p T^{2} \)  |  1.53.c  | 
 | 59 |  \( 1 - 10 T + p T^{2} \)  |  1.59.ak  | 
 | 61 |  \( 1 - 2 T + p T^{2} \)  |  1.61.ac  | 
 | 67 |  \( 1 - 11 T + p T^{2} \)  |  1.67.al  | 
 | 71 |  \( 1 + 12 T + p T^{2} \)  |  1.71.m  | 
 | 73 |  \( 1 - 3 T + p T^{2} \)  |  1.73.ad  | 
 | 79 |  \( 1 + 17 T + p T^{2} \)  |  1.79.r  | 
 | 83 |  \( 1 + 16 T + p T^{2} \)  |  1.83.q  | 
 | 89 |  \( 1 + 12 T + p T^{2} \)  |  1.89.m  | 
 | 97 |  \( 1 - 14 T + p T^{2} \)  |  1.97.ao  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−8.048191487728243322145007863091, −7.26659301468958733121166374062, −6.71270102690899525841442572868, −5.56540415156406552357106998644, −5.02645578918039541898832978816, −4.15299607182744035112334853502, −3.17772620331725117881503369395, −2.53396280729970689748405554083, −1.53446718549130139861009880797, 0, 
1.53446718549130139861009880797, 2.53396280729970689748405554083, 3.17772620331725117881503369395, 4.15299607182744035112334853502, 5.02645578918039541898832978816, 5.56540415156406552357106998644, 6.71270102690899525841442572868, 7.26659301468958733121166374062, 8.048191487728243322145007863091