Properties

Label 2-4704-1.1-c1-0-56
Degree $2$
Conductor $4704$
Sign $-1$
Analytic cond. $37.5616$
Root an. cond. $6.12875$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 9-s − 2·11-s + 5·13-s − 2·17-s − 3·19-s − 2·23-s − 5·25-s − 27-s + 8·29-s + 31-s + 2·33-s − 5·37-s − 5·39-s + 2·41-s − 7·43-s + 8·47-s + 2·51-s − 2·53-s + 3·57-s − 10·59-s − 2·61-s + 11·67-s + 2·69-s − 12·71-s − 3·73-s + 5·75-s + ⋯
L(s)  = 1  − 0.577·3-s + 1/3·9-s − 0.603·11-s + 1.38·13-s − 0.485·17-s − 0.688·19-s − 0.417·23-s − 25-s − 0.192·27-s + 1.48·29-s + 0.179·31-s + 0.348·33-s − 0.821·37-s − 0.800·39-s + 0.312·41-s − 1.06·43-s + 1.16·47-s + 0.280·51-s − 0.274·53-s + 0.397·57-s − 1.30·59-s − 0.256·61-s + 1.34·67-s + 0.240·69-s − 1.42·71-s − 0.351·73-s + 0.577·75-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4704 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4704\)    =    \(2^{5} \cdot 3 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(37.5616\)
Root analytic conductor: \(6.12875\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4704,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 5 T + p T^{2} \) 1.13.af
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 3 T + p T^{2} \) 1.19.d
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 11 T + p T^{2} \) 1.67.al
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 3 T + p T^{2} \) 1.73.d
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.041459520984952611250563019274, −7.12849542224079283196468796051, −6.29211351940374144460927791725, −5.94332397504937360956820682604, −4.97069578950949997794214798605, −4.25317810266192389378879969849, −3.43912830466077831983260296060, −2.33536529370592371480742998371, −1.30551341946209791454788111753, 0, 1.30551341946209791454788111753, 2.33536529370592371480742998371, 3.43912830466077831983260296060, 4.25317810266192389378879969849, 4.97069578950949997794214798605, 5.94332397504937360956820682604, 6.29211351940374144460927791725, 7.12849542224079283196468796051, 8.041459520984952611250563019274

Graph of the $Z$-function along the critical line