Properties

Label 2-43706-1.1-c1-0-8
Degree $2$
Conductor $43706$
Sign $1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s + 7-s − 8-s − 2·9-s − 10-s + 2·11-s − 12-s + 13-s − 14-s − 15-s + 16-s + 5·17-s + 2·18-s + 20-s − 21-s − 2·22-s − 2·23-s + 24-s − 4·25-s − 26-s + 5·27-s + 28-s + 30-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s + 0.377·7-s − 0.353·8-s − 2/3·9-s − 0.316·10-s + 0.603·11-s − 0.288·12-s + 0.277·13-s − 0.267·14-s − 0.258·15-s + 1/4·16-s + 1.21·17-s + 0.471·18-s + 0.223·20-s − 0.218·21-s − 0.426·22-s − 0.417·23-s + 0.204·24-s − 4/5·25-s − 0.196·26-s + 0.962·27-s + 0.188·28-s + 0.182·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.547578100\)
\(L(\frac12)\) \(\approx\) \(1.547578100\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 + T + p T^{2} \) 1.3.b
5 \( 1 - T + p T^{2} \) 1.5.ab
7 \( 1 - T + p T^{2} \) 1.7.ab
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 5 T + p T^{2} \) 1.37.af
43 \( 1 - 9 T + p T^{2} \) 1.43.aj
47 \( 1 - 5 T + p T^{2} \) 1.47.af
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 7 T + p T^{2} \) 1.71.ah
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 14 T + p T^{2} \) 1.79.ao
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.69627078882649, −14.15268436890897, −13.89528059289698, −12.93885445235287, −12.55198260481664, −11.84744197546600, −11.51998814575483, −11.09689651256239, −10.45413643815788, −10.01712652273443, −9.335842074863889, −9.042584194723948, −8.251982199316520, −7.871895274005805, −7.247186266306231, −6.545398249630327, −6.013256130084825, −5.524048340541050, −5.158534705494529, −4.018093658569057, −3.627709711486860, −2.637046830066941, −2.050067263193013, −1.213286122447098, −0.5755201438954873, 0.5755201438954873, 1.213286122447098, 2.050067263193013, 2.637046830066941, 3.627709711486860, 4.018093658569057, 5.158534705494529, 5.524048340541050, 6.013256130084825, 6.545398249630327, 7.247186266306231, 7.871895274005805, 8.251982199316520, 9.042584194723948, 9.335842074863889, 10.01712652273443, 10.45413643815788, 11.09689651256239, 11.51998814575483, 11.84744197546600, 12.55198260481664, 12.93885445235287, 13.89528059289698, 14.15268436890897, 14.69627078882649

Graph of the $Z$-function along the critical line