Properties

Label 2-43706-1.1-c1-0-7
Degree $2$
Conductor $43706$
Sign $1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 2·3-s + 4-s + 2·5-s − 2·6-s + 4·7-s + 8-s + 9-s + 2·10-s − 6·11-s − 2·12-s − 13-s + 4·14-s − 4·15-s + 16-s + 4·17-s + 18-s − 6·19-s + 2·20-s − 8·21-s − 6·22-s − 4·23-s − 2·24-s − 25-s − 26-s + 4·27-s + 4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.15·3-s + 1/2·4-s + 0.894·5-s − 0.816·6-s + 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.632·10-s − 1.80·11-s − 0.577·12-s − 0.277·13-s + 1.06·14-s − 1.03·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s − 1.37·19-s + 0.447·20-s − 1.74·21-s − 1.27·22-s − 0.834·23-s − 0.408·24-s − 1/5·25-s − 0.196·26-s + 0.769·27-s + 0.755·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.355250188\)
\(L(\frac12)\) \(\approx\) \(2.355250188\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 + T \)
41 \( 1 \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 2 T + p T^{2} \) 1.37.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.60530544182477, −14.12776503234797, −13.71030834812625, −13.03839715568153, −12.63243368882646, −11.99160002003566, −11.76433296025945, −10.86847987579993, −10.64238450617760, −10.39063277192072, −9.681382817286194, −8.748042625018544, −8.060866546248831, −7.824350108922501, −7.058282696448415, −6.299217274159130, −5.813393582419786, −5.362832312820536, −5.011932557046913, −4.568110155586443, −3.698459307039581, −2.683383902888164, −2.132827625892885, −1.604709478138374, −0.5023192753983633, 0.5023192753983633, 1.604709478138374, 2.132827625892885, 2.683383902888164, 3.698459307039581, 4.568110155586443, 5.011932557046913, 5.362832312820536, 5.813393582419786, 6.299217274159130, 7.058282696448415, 7.824350108922501, 8.060866546248831, 8.748042625018544, 9.681382817286194, 10.39063277192072, 10.64238450617760, 10.86847987579993, 11.76433296025945, 11.99160002003566, 12.63243368882646, 13.03839715568153, 13.71030834812625, 14.12776503234797, 14.60530544182477

Graph of the $Z$-function along the critical line