Properties

Label 2-43706-1.1-c1-0-21
Degree $2$
Conductor $43706$
Sign $-1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3·3-s + 4-s + 2·5-s − 3·6-s + 2·7-s + 8-s + 6·9-s + 2·10-s + 2·11-s − 3·12-s + 13-s + 2·14-s − 6·15-s + 16-s + 6·18-s + 2·20-s − 6·21-s + 2·22-s − 4·23-s − 3·24-s − 25-s + 26-s − 9·27-s + 2·28-s − 2·29-s − 6·30-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.73·3-s + 1/2·4-s + 0.894·5-s − 1.22·6-s + 0.755·7-s + 0.353·8-s + 2·9-s + 0.632·10-s + 0.603·11-s − 0.866·12-s + 0.277·13-s + 0.534·14-s − 1.54·15-s + 1/4·16-s + 1.41·18-s + 0.447·20-s − 1.30·21-s + 0.426·22-s − 0.834·23-s − 0.612·24-s − 1/5·25-s + 0.196·26-s − 1.73·27-s + 0.377·28-s − 0.371·29-s − 1.09·30-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 + p T + p T^{2} \) 1.3.d
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - T + p T^{2} \) 1.31.ab
37 \( 1 + p T^{2} \) 1.37.a
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 - 13 T + p T^{2} \) 1.61.an
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 + 11 T + p T^{2} \) 1.97.l
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.89526112762287, −14.21132685023984, −14.03333542991932, −13.13443217146624, −12.99863891426469, −12.13289832838409, −11.91458440990256, −11.32276935578740, −11.01327132313725, −10.39344661075830, −9.896549729490430, −9.431983733768587, −8.531039131349398, −7.876935150183156, −7.148462216164532, −6.642487012332020, −6.079152054009087, −5.740694177998739, −5.271715630211767, −4.603153506185576, −4.207562496296773, −3.426903485792100, −2.322319318670954, −1.624684355084606, −1.180139975802423, 0, 1.180139975802423, 1.624684355084606, 2.322319318670954, 3.426903485792100, 4.207562496296773, 4.603153506185576, 5.271715630211767, 5.740694177998739, 6.079152054009087, 6.642487012332020, 7.148462216164532, 7.876935150183156, 8.531039131349398, 9.431983733768587, 9.896549729490430, 10.39344661075830, 11.01327132313725, 11.32276935578740, 11.91458440990256, 12.13289832838409, 12.99863891426469, 13.13443217146624, 14.03333542991932, 14.21132685023984, 14.89526112762287

Graph of the $Z$-function along the critical line