Properties

Label 2-43706-1.1-c1-0-18
Degree $2$
Conductor $43706$
Sign $-1$
Analytic cond. $348.994$
Root an. cond. $18.6813$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 2·5-s + 8-s − 3·9-s − 2·10-s + 13-s + 16-s + 6·17-s − 3·18-s + 8·19-s − 2·20-s − 25-s + 26-s − 10·29-s + 32-s + 6·34-s − 3·36-s + 6·37-s + 8·38-s − 2·40-s − 4·43-s + 6·45-s + 8·47-s − 7·49-s − 50-s + 52-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.894·5-s + 0.353·8-s − 9-s − 0.632·10-s + 0.277·13-s + 1/4·16-s + 1.45·17-s − 0.707·18-s + 1.83·19-s − 0.447·20-s − 1/5·25-s + 0.196·26-s − 1.85·29-s + 0.176·32-s + 1.02·34-s − 1/2·36-s + 0.986·37-s + 1.29·38-s − 0.316·40-s − 0.609·43-s + 0.894·45-s + 1.16·47-s − 49-s − 0.141·50-s + 0.138·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 43706 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(43706\)    =    \(2 \cdot 13 \cdot 41^{2}\)
Sign: $-1$
Analytic conductor: \(348.994\)
Root analytic conductor: \(18.6813\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 43706,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
13 \( 1 - T \)
41 \( 1 \)
good3 \( 1 + p T^{2} \) 1.3.a
5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.95309047566019, −14.43046647653812, −13.83226738704182, −13.60661421307372, −12.80916728274620, −12.27293644068948, −11.75144274175832, −11.54436131630804, −11.01057530462308, −10.39404731901553, −9.567821710514861, −9.304164850240115, −8.411581684601067, −7.825396394108154, −7.547476585821267, −7.039123952191037, −5.927718387899477, −5.780652874572898, −5.228543317657359, −4.431261382466863, −3.805222143591856, −3.081628863161963, −3.060534158580915, −1.808116061355712, −1.024841992488408, 0, 1.024841992488408, 1.808116061355712, 3.060534158580915, 3.081628863161963, 3.805222143591856, 4.431261382466863, 5.228543317657359, 5.780652874572898, 5.927718387899477, 7.039123952191037, 7.547476585821267, 7.825396394108154, 8.411581684601067, 9.304164850240115, 9.567821710514861, 10.39404731901553, 11.01057530462308, 11.54436131630804, 11.75144274175832, 12.27293644068948, 12.80916728274620, 13.60661421307372, 13.83226738704182, 14.43046647653812, 14.95309047566019

Graph of the $Z$-function along the critical line