Properties

Label 2-4212-1.1-c1-0-39
Degree $2$
Conductor $4212$
Sign $-1$
Analytic cond. $33.6329$
Root an. cond. $5.79939$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 6·11-s + 13-s + 3·17-s + 2·19-s − 9·23-s − 5·25-s + 6·29-s + 8·31-s − 10·37-s − 6·41-s + 11·43-s − 6·47-s − 3·49-s − 9·53-s − 61-s − 4·67-s + 12·71-s − 16·73-s − 12·77-s − 79-s + 6·83-s − 6·89-s + 2·91-s + 8·97-s − 3·101-s − 16·103-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.80·11-s + 0.277·13-s + 0.727·17-s + 0.458·19-s − 1.87·23-s − 25-s + 1.11·29-s + 1.43·31-s − 1.64·37-s − 0.937·41-s + 1.67·43-s − 0.875·47-s − 3/7·49-s − 1.23·53-s − 0.128·61-s − 0.488·67-s + 1.42·71-s − 1.87·73-s − 1.36·77-s − 0.112·79-s + 0.658·83-s − 0.635·89-s + 0.209·91-s + 0.812·97-s − 0.298·101-s − 1.57·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 4212 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(4212\)    =    \(2^{2} \cdot 3^{4} \cdot 13\)
Sign: $-1$
Analytic conductor: \(33.6329\)
Root analytic conductor: \(5.79939\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 4212,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 9 T + p T^{2} \) 1.23.j
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 11 T + p T^{2} \) 1.43.al
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + T + p T^{2} \) 1.61.b
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 16 T + p T^{2} \) 1.73.q
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.011485516047432859802092989700, −7.63917040215018426929877996228, −6.50735049473854513344086448375, −5.69982767426692867170226691618, −5.10656866705605840759876110111, −4.35594400132373968398710701366, −3.30803258045840683268212768301, −2.44746961539795065405643763958, −1.48225262084884234583906972441, 0, 1.48225262084884234583906972441, 2.44746961539795065405643763958, 3.30803258045840683268212768301, 4.35594400132373968398710701366, 5.10656866705605840759876110111, 5.69982767426692867170226691618, 6.50735049473854513344086448375, 7.63917040215018426929877996228, 8.011485516047432859802092989700

Graph of the $Z$-function along the critical line