Properties

Label 2-41280-1.1-c1-0-51
Degree $2$
Conductor $41280$
Sign $-1$
Analytic cond. $329.622$
Root an. cond. $18.1555$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 2·7-s + 9-s − 2·11-s + 2·13-s − 15-s − 6·19-s − 2·21-s − 6·23-s + 25-s − 27-s + 6·29-s − 8·31-s + 2·33-s + 2·35-s + 6·37-s − 2·39-s − 6·41-s − 43-s + 45-s + 2·47-s − 3·49-s + 14·53-s − 2·55-s + 6·57-s − 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 0.755·7-s + 1/3·9-s − 0.603·11-s + 0.554·13-s − 0.258·15-s − 1.37·19-s − 0.436·21-s − 1.25·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s − 1.43·31-s + 0.348·33-s + 0.338·35-s + 0.986·37-s − 0.320·39-s − 0.937·41-s − 0.152·43-s + 0.149·45-s + 0.291·47-s − 3/7·49-s + 1.92·53-s − 0.269·55-s + 0.794·57-s − 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 41280 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(41280\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 43\)
Sign: $-1$
Analytic conductor: \(329.622\)
Root analytic conductor: \(18.1555\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 41280,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
43 \( 1 + T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 8 T + p T^{2} \) 1.83.ai
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.84646525348688, −14.63162912330587, −13.92643523643870, −13.35756076866551, −13.03143127196114, −12.33381962821027, −11.92375424168589, −11.27569368365446, −10.78861656363749, −10.41003055357937, −9.913834636080144, −9.203883800759019, −8.439545457651807, −8.256274407587283, −7.498743963847197, −6.848785923824194, −6.242148426786040, −5.768487335168689, −5.231815554042437, −4.539179322405898, −4.092940830028463, −3.267811982793561, −2.239949492019167, −1.912294690975184, −0.9745390444972573, 0, 0.9745390444972573, 1.912294690975184, 2.239949492019167, 3.267811982793561, 4.092940830028463, 4.539179322405898, 5.231815554042437, 5.768487335168689, 6.242148426786040, 6.848785923824194, 7.498743963847197, 8.256274407587283, 8.439545457651807, 9.203883800759019, 9.913834636080144, 10.41003055357937, 10.78861656363749, 11.27569368365446, 11.92375424168589, 12.33381962821027, 13.03143127196114, 13.35756076866551, 13.92643523643870, 14.63162912330587, 14.84646525348688

Graph of the $Z$-function along the critical line