L(s) = 1 | + 3·3-s + 2·7-s + 6·9-s + 11-s + 4·13-s − 5·17-s + 19-s + 6·21-s − 2·23-s + 9·27-s + 8·29-s − 10·31-s + 3·33-s − 6·37-s + 12·39-s − 3·41-s − 4·43-s + 4·47-s − 3·49-s − 15·51-s + 6·53-s + 3·57-s + 8·59-s − 10·61-s + 12·63-s + 67-s − 6·69-s + ⋯ |
L(s) = 1 | + 1.73·3-s + 0.755·7-s + 2·9-s + 0.301·11-s + 1.10·13-s − 1.21·17-s + 0.229·19-s + 1.30·21-s − 0.417·23-s + 1.73·27-s + 1.48·29-s − 1.79·31-s + 0.522·33-s − 0.986·37-s + 1.92·39-s − 0.468·41-s − 0.609·43-s + 0.583·47-s − 3/7·49-s − 2.10·51-s + 0.824·53-s + 0.397·57-s + 1.04·59-s − 1.28·61-s + 1.51·63-s + 0.122·67-s − 0.722·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.576844161\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.576844161\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ |
---|
bad | 2 | \( 1 \) | |
| 5 | \( 1 \) | |
good | 3 | \( 1 - p T + p T^{2} \) | 1.3.ad |
| 7 | \( 1 - 2 T + p T^{2} \) | 1.7.ac |
| 11 | \( 1 - T + p T^{2} \) | 1.11.ab |
| 13 | \( 1 - 4 T + p T^{2} \) | 1.13.ae |
| 17 | \( 1 + 5 T + p T^{2} \) | 1.17.f |
| 19 | \( 1 - T + p T^{2} \) | 1.19.ab |
| 23 | \( 1 + 2 T + p T^{2} \) | 1.23.c |
| 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai |
| 31 | \( 1 + 10 T + p T^{2} \) | 1.31.k |
| 37 | \( 1 + 6 T + p T^{2} \) | 1.37.g |
| 41 | \( 1 + 3 T + p T^{2} \) | 1.41.d |
| 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e |
| 47 | \( 1 - 4 T + p T^{2} \) | 1.47.ae |
| 53 | \( 1 - 6 T + p T^{2} \) | 1.53.ag |
| 59 | \( 1 - 8 T + p T^{2} \) | 1.59.ai |
| 61 | \( 1 + 10 T + p T^{2} \) | 1.61.k |
| 67 | \( 1 - T + p T^{2} \) | 1.67.ab |
| 71 | \( 1 - 12 T + p T^{2} \) | 1.71.am |
| 73 | \( 1 + 3 T + p T^{2} \) | 1.73.d |
| 79 | \( 1 + 6 T + p T^{2} \) | 1.79.g |
| 83 | \( 1 - 13 T + p T^{2} \) | 1.83.an |
| 89 | \( 1 + 9 T + p T^{2} \) | 1.89.j |
| 97 | \( 1 - 14 T + p T^{2} \) | 1.97.ao |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.991961706198476363435962654526, −8.720602413041024106637832803548, −8.055626452478264447820487029387, −7.21770881604952097592020989657, −6.40684500687784874784919770421, −5.06600245901943802531882127393, −4.07720376840654495646614890107, −3.44088547493747998942383915443, −2.29339881623541277051522493670, −1.48624115915066658933915937826,
1.48624115915066658933915937826, 2.29339881623541277051522493670, 3.44088547493747998942383915443, 4.07720376840654495646614890107, 5.06600245901943802531882127393, 6.40684500687784874784919770421, 7.21770881604952097592020989657, 8.055626452478264447820487029387, 8.720602413041024106637832803548, 8.991961706198476363435962654526