Properties

Label 2-40560-1.1-c1-0-14
Degree $2$
Conductor $40560$
Sign $1$
Analytic cond. $323.873$
Root an. cond. $17.9964$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s + 9-s − 15-s + 2·17-s − 4·23-s + 25-s − 27-s + 6·29-s + 8·31-s − 10·37-s + 6·41-s − 4·43-s + 45-s − 8·47-s − 7·49-s − 2·51-s + 2·53-s + 6·61-s + 12·67-s + 4·69-s + 8·71-s − 6·73-s − 75-s − 8·79-s + 81-s − 12·83-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s + 1/3·9-s − 0.258·15-s + 0.485·17-s − 0.834·23-s + 1/5·25-s − 0.192·27-s + 1.11·29-s + 1.43·31-s − 1.64·37-s + 0.937·41-s − 0.609·43-s + 0.149·45-s − 1.16·47-s − 49-s − 0.280·51-s + 0.274·53-s + 0.768·61-s + 1.46·67-s + 0.481·69-s + 0.949·71-s − 0.702·73-s − 0.115·75-s − 0.900·79-s + 1/9·81-s − 1.31·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 40560 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(40560\)    =    \(2^{4} \cdot 3 \cdot 5 \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(323.873\)
Root analytic conductor: \(17.9964\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 40560,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.901453835\)
\(L(\frac12)\) \(\approx\) \(1.901453835\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.63540458694805, −14.16073887337655, −13.88130579968643, −13.04273915601511, −12.79402028621662, −12.00710151797706, −11.76258308062379, −11.18640939186334, −10.27542858538275, −10.25497022319488, −9.660114905936253, −8.963763386473411, −8.231439212281076, −7.977428001388164, −7.030522503068956, −6.588845224667505, −6.127056471713186, −5.430539188007725, −4.951730422612896, −4.348781241512449, −3.569360942546312, −2.897906296457915, −2.087564178708744, −1.366638664573329, −0.5431315471412454, 0.5431315471412454, 1.366638664573329, 2.087564178708744, 2.897906296457915, 3.569360942546312, 4.348781241512449, 4.951730422612896, 5.430539188007725, 6.127056471713186, 6.588845224667505, 7.030522503068956, 7.977428001388164, 8.231439212281076, 8.963763386473411, 9.660114905936253, 10.25497022319488, 10.27542858538275, 11.18640939186334, 11.76258308062379, 12.00710151797706, 12.79402028621662, 13.04273915601511, 13.88130579968643, 14.16073887337655, 14.63540458694805

Graph of the $Z$-function along the critical line