Properties

Label 2-3900-1.1-c1-0-26
Degree $2$
Conductor $3900$
Sign $-1$
Analytic cond. $31.1416$
Root an. cond. $5.58047$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s − 6·11-s + 13-s + 2·17-s − 2·19-s − 2·21-s + 4·23-s − 27-s + 2·29-s − 2·31-s + 6·33-s − 2·37-s − 39-s − 6·41-s − 6·47-s − 3·49-s − 2·51-s + 2·53-s + 2·57-s − 6·59-s + 14·61-s + 2·63-s − 2·67-s − 4·69-s − 10·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s − 1.80·11-s + 0.277·13-s + 0.485·17-s − 0.458·19-s − 0.436·21-s + 0.834·23-s − 0.192·27-s + 0.371·29-s − 0.359·31-s + 1.04·33-s − 0.328·37-s − 0.160·39-s − 0.937·41-s − 0.875·47-s − 3/7·49-s − 0.280·51-s + 0.274·53-s + 0.264·57-s − 0.781·59-s + 1.79·61-s + 0.251·63-s − 0.244·67-s − 0.481·69-s − 1.18·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 3900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(3900\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(31.1416\)
Root analytic conductor: \(5.58047\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 3900,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
13 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + 6 T + p T^{2} \) 1.11.g
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - 14 T + p T^{2} \) 1.61.ao
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 10 T + p T^{2} \) 1.71.k
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 2 T + p T^{2} \) 1.83.c
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.142425369545890883117355555645, −7.39911338759549255213084093414, −6.67202781543872378540003070059, −5.65593542574765453730565521629, −5.16233667984109291565045018745, −4.55518123451006424874122980227, −3.39156173284761387653479895063, −2.44209251766647477179761587071, −1.36595130074054159844538728048, 0, 1.36595130074054159844538728048, 2.44209251766647477179761587071, 3.39156173284761387653479895063, 4.55518123451006424874122980227, 5.16233667984109291565045018745, 5.65593542574765453730565521629, 6.67202781543872378540003070059, 7.39911338759549255213084093414, 8.142425369545890883117355555645

Graph of the $Z$-function along the critical line