Properties

Label 2-383792-1.1-c1-0-15
Degree $2$
Conductor $383792$
Sign $1$
Analytic cond. $3064.59$
Root an. cond. $55.3587$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 2·5-s − 2·7-s + 6·9-s − 11-s + 7·13-s + 6·15-s + 7·19-s − 6·21-s − 6·23-s − 25-s + 9·27-s + 3·29-s + 2·31-s − 3·33-s − 4·35-s + 6·37-s + 21·39-s − 6·41-s − 7·43-s + 12·45-s − 8·47-s − 3·49-s − 6·53-s − 2·55-s + 21·57-s + 14·59-s + ⋯
L(s)  = 1  + 1.73·3-s + 0.894·5-s − 0.755·7-s + 2·9-s − 0.301·11-s + 1.94·13-s + 1.54·15-s + 1.60·19-s − 1.30·21-s − 1.25·23-s − 1/5·25-s + 1.73·27-s + 0.557·29-s + 0.359·31-s − 0.522·33-s − 0.676·35-s + 0.986·37-s + 3.36·39-s − 0.937·41-s − 1.06·43-s + 1.78·45-s − 1.16·47-s − 3/7·49-s − 0.824·53-s − 0.269·55-s + 2.78·57-s + 1.82·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 383792 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(383792\)    =    \(2^{4} \cdot 17^{2} \cdot 83\)
Sign: $1$
Analytic conductor: \(3064.59\)
Root analytic conductor: \(55.3587\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 383792,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(8.025958743\)
\(L(\frac12)\) \(\approx\) \(8.025958743\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
17 \( 1 \)
83 \( 1 - T \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 - 7 T + p T^{2} \) 1.13.ah
19 \( 1 - 7 T + p T^{2} \) 1.19.ah
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 14 T + p T^{2} \) 1.59.ao
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + T + p T^{2} \) 1.73.b
79 \( 1 + 8 T + p T^{2} \) 1.79.i
89 \( 1 - 8 T + p T^{2} \) 1.89.ai
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.79704882946515, −12.03802953667157, −11.61957392102384, −11.08537120605732, −10.33732008583468, −10.05967893873203, −9.555461064502619, −9.515681787586843, −8.786228211375522, −8.421662747958489, −7.919143871583044, −7.774100268197916, −6.881039439251348, −6.463610920793334, −6.164238853527821, −5.514155476288039, −5.000327418211123, −4.224786910419382, −3.704127531921953, −3.347785084245027, −2.958433329892097, −2.412895592705980, −1.581534987696501, −1.551135736504678, −0.6117963335793934, 0.6117963335793934, 1.551135736504678, 1.581534987696501, 2.412895592705980, 2.958433329892097, 3.347785084245027, 3.704127531921953, 4.224786910419382, 5.000327418211123, 5.514155476288039, 6.164238853527821, 6.463610920793334, 6.881039439251348, 7.774100268197916, 7.919143871583044, 8.421662747958489, 8.786228211375522, 9.515681787586843, 9.555461064502619, 10.05967893873203, 10.33732008583468, 11.08537120605732, 11.61957392102384, 12.03802953667157, 12.79704882946515

Graph of the $Z$-function along the critical line