Properties

Label 2-382800-1.1-c1-0-136
Degree $2$
Conductor $382800$
Sign $-1$
Analytic cond. $3056.67$
Root an. cond. $55.2871$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·7-s + 9-s + 11-s + 4·13-s − 4·19-s − 2·21-s − 4·23-s − 27-s + 29-s − 8·31-s − 33-s + 2·37-s − 4·39-s + 2·41-s − 2·43-s + 12·47-s − 3·49-s + 10·53-s + 4·57-s + 12·59-s − 14·61-s + 2·63-s + 4·69-s − 8·71-s − 4·73-s + 2·77-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.755·7-s + 1/3·9-s + 0.301·11-s + 1.10·13-s − 0.917·19-s − 0.436·21-s − 0.834·23-s − 0.192·27-s + 0.185·29-s − 1.43·31-s − 0.174·33-s + 0.328·37-s − 0.640·39-s + 0.312·41-s − 0.304·43-s + 1.75·47-s − 3/7·49-s + 1.37·53-s + 0.529·57-s + 1.56·59-s − 1.79·61-s + 0.251·63-s + 0.481·69-s − 0.949·71-s − 0.468·73-s + 0.227·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 382800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(382800\)    =    \(2^{4} \cdot 3 \cdot 5^{2} \cdot 11 \cdot 29\)
Sign: $-1$
Analytic conductor: \(3056.67\)
Root analytic conductor: \(55.2871\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 382800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
11 \( 1 - T \)
29 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 + 4 T + p T^{2} \) 1.73.e
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.63310767404697, −12.10624837103456, −11.84203650534243, −11.22757529564002, −11.00902095364431, −10.48303316047596, −10.21638361616677, −9.520920428328366, −8.929567431766652, −8.673078447115864, −8.220769367990688, −7.484350731785080, −7.359982817670425, −6.586482587921374, −6.158735887843442, −5.760552683101944, −5.373914213973770, −4.622014038516451, −4.286719374315264, −3.793466805143395, −3.324428349192256, −2.375679237069143, −1.976723179135619, −1.364758531816583, −0.8000593664790446, 0, 0.8000593664790446, 1.364758531816583, 1.976723179135619, 2.375679237069143, 3.324428349192256, 3.793466805143395, 4.286719374315264, 4.622014038516451, 5.373914213973770, 5.760552683101944, 6.158735887843442, 6.586482587921374, 7.359982817670425, 7.484350731785080, 8.220769367990688, 8.673078447115864, 8.929567431766652, 9.520920428328366, 10.21638361616677, 10.48303316047596, 11.00902095364431, 11.22757529564002, 11.84203650534243, 12.10624837103456, 12.63310767404697

Graph of the $Z$-function along the critical line