Properties

Label 2-38088-1.1-c1-0-1
Degree $2$
Conductor $38088$
Sign $1$
Analytic cond. $304.134$
Root an. cond. $17.4394$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s − 5·13-s − 6·17-s − 6·19-s − 5·25-s − 9·29-s + 3·31-s + 8·37-s − 3·41-s + 8·43-s − 7·47-s − 3·49-s − 2·53-s − 4·59-s + 10·61-s − 8·67-s − 7·71-s + 9·73-s + 6·79-s − 14·83-s + 16·89-s − 10·91-s − 6·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.755·7-s − 1.38·13-s − 1.45·17-s − 1.37·19-s − 25-s − 1.67·29-s + 0.538·31-s + 1.31·37-s − 0.468·41-s + 1.21·43-s − 1.02·47-s − 3/7·49-s − 0.274·53-s − 0.520·59-s + 1.28·61-s − 0.977·67-s − 0.830·71-s + 1.05·73-s + 0.675·79-s − 1.53·83-s + 1.69·89-s − 1.04·91-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 38088 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(38088\)    =    \(2^{3} \cdot 3^{2} \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(304.134\)
Root analytic conductor: \(17.4394\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 38088,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8441970051\)
\(L(\frac12)\) \(\approx\) \(0.8441970051\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
23 \( 1 \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 2 T + p T^{2} \) 1.7.ac
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + 6 T + p T^{2} \) 1.19.g
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 7 T + p T^{2} \) 1.47.h
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 + 7 T + p T^{2} \) 1.71.h
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.85824015636086, −14.50799994192691, −13.80892450556438, −13.14149191841095, −12.91552579360697, −12.21011638174522, −11.62498349854613, −11.14172393514391, −10.81512920465902, −10.00941485972715, −9.545306887238372, −9.017330175884930, −8.364714287629903, −7.832223340638508, −7.384973655150225, −6.672852707694588, −6.152078552926645, −5.457287936826422, −4.719250310632100, −4.392233557905473, −3.770669521698627, −2.668281104918745, −2.183704004804005, −1.646273181218266, −0.3162800656969463, 0.3162800656969463, 1.646273181218266, 2.183704004804005, 2.668281104918745, 3.770669521698627, 4.392233557905473, 4.719250310632100, 5.457287936826422, 6.152078552926645, 6.672852707694588, 7.384973655150225, 7.832223340638508, 8.364714287629903, 9.017330175884930, 9.545306887238372, 10.00941485972715, 10.81512920465902, 11.14172393514391, 11.62498349854613, 12.21011638174522, 12.91552579360697, 13.14149191841095, 13.80892450556438, 14.50799994192691, 14.85824015636086

Graph of the $Z$-function along the critical line