Properties

Label 38088.q
Number of curves $1$
Conductor $38088$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 38088.q1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 38088.q do not have complex multiplication.

Modular form 38088.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - 5 q^{13} - 6 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 38088.q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
38088.q1 38088r1 \([0, 0, 0, -261855, -51575913]\) \(-1149984000/23\) \(-39713884013808\) \([]\) \(177408\) \(1.7302\) \(\Gamma_0(N)\)-optimal