Properties

Label 2-372645-1.1-c1-0-12
Degree $2$
Conductor $372645$
Sign $1$
Analytic cond. $2975.58$
Root an. cond. $54.5489$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·2-s + 2·4-s + 5-s + 2·10-s + 3·11-s − 4·16-s − 5·17-s + 2·19-s + 2·20-s + 6·22-s − 4·23-s + 25-s − 7·29-s − 10·31-s − 8·32-s − 10·34-s − 2·37-s + 4·38-s − 10·43-s + 6·44-s − 8·46-s + 3·47-s + 2·50-s − 4·53-s + 3·55-s − 14·58-s − 4·59-s + ⋯
L(s)  = 1  + 1.41·2-s + 4-s + 0.447·5-s + 0.632·10-s + 0.904·11-s − 16-s − 1.21·17-s + 0.458·19-s + 0.447·20-s + 1.27·22-s − 0.834·23-s + 1/5·25-s − 1.29·29-s − 1.79·31-s − 1.41·32-s − 1.71·34-s − 0.328·37-s + 0.648·38-s − 1.52·43-s + 0.904·44-s − 1.17·46-s + 0.437·47-s + 0.282·50-s − 0.549·53-s + 0.404·55-s − 1.83·58-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 372645 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(372645\)    =    \(3^{2} \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(2975.58\)
Root analytic conductor: \(54.5489\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 372645,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.216550471\)
\(L(\frac12)\) \(\approx\) \(2.216550471\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad3 \( 1 \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good2 \( 1 - p T + p T^{2} \) 1.2.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
17 \( 1 + 5 T + p T^{2} \) 1.17.f
19 \( 1 - 2 T + p T^{2} \) 1.19.ac
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 4 T + p T^{2} \) 1.53.e
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + T + p T^{2} \) 1.71.b
73 \( 1 + 5 T + p T^{2} \) 1.73.f
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 9 T + p T^{2} \) 1.83.j
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.60695988075955, −12.20587965570086, −11.50288471772964, −11.44459745024717, −10.92686999169159, −10.34721867990445, −9.679182761793781, −9.367492527965288, −8.901339325993405, −8.517819495317897, −7.784567615550922, −7.079547678363228, −6.924056820539675, −6.317518991779951, −5.871439409464341, −5.486535951309407, −5.003859914752559, −4.461145127197476, −3.911502103994186, −3.652352207732931, −3.067496994458736, −2.374075731583219, −1.848517750909112, −1.481618899220255, −0.2671523593598539, 0.2671523593598539, 1.481618899220255, 1.848517750909112, 2.374075731583219, 3.067496994458736, 3.652352207732931, 3.911502103994186, 4.461145127197476, 5.003859914752559, 5.486535951309407, 5.871439409464341, 6.317518991779951, 6.924056820539675, 7.079547678363228, 7.784567615550922, 8.517819495317897, 8.901339325993405, 9.367492527965288, 9.679182761793781, 10.34721867990445, 10.92686999169159, 11.44459745024717, 11.50288471772964, 12.20587965570086, 12.60695988075955

Graph of the $Z$-function along the critical line