| L(s)  = 1 | − 2-s   − 3-s   + 4-s   + 5-s   + 6-s     − 8-s   + 9-s   − 10-s     − 12-s   − 13-s     − 15-s   + 16-s   + 6·17-s   − 18-s   − 19-s   + 20-s         + 24-s   + 25-s   + 26-s   − 27-s     + 6·29-s   + 30-s   + 4·31-s   − 32-s     − 6·34-s     + 36-s   + 2·37-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s   − 0.577·3-s   + 1/2·4-s   + 0.447·5-s   + 0.408·6-s     − 0.353·8-s   + 1/3·9-s   − 0.316·10-s     − 0.288·12-s   − 0.277·13-s     − 0.258·15-s   + 1/4·16-s   + 1.45·17-s   − 0.235·18-s   − 0.229·19-s   + 0.223·20-s         + 0.204·24-s   + 1/5·25-s   + 0.196·26-s   − 0.192·27-s     + 1.11·29-s   + 0.182·30-s   + 0.718·31-s   − 0.176·32-s     − 1.02·34-s     + 1/6·36-s   + 0.328·37-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(=\) | \(0\) | 
    
      | \(L(\frac12)\) | \(=\) | \(0\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 + T \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 - T \) |  | 
|  | 7 | \( 1 \) |  | 
|  | 13 | \( 1 + T \) |  | 
|  | 19 | \( 1 + T \) |  | 
| good | 11 | \( 1 + p T^{2} \) | 1.11.a | 
|  | 17 | \( 1 - 6 T + p T^{2} \) | 1.17.ag | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag | 
|  | 31 | \( 1 - 4 T + p T^{2} \) | 1.31.ae | 
|  | 37 | \( 1 - 2 T + p T^{2} \) | 1.37.ac | 
|  | 41 | \( 1 + 6 T + p T^{2} \) | 1.41.g | 
|  | 43 | \( 1 + 4 T + p T^{2} \) | 1.43.e | 
|  | 47 | \( 1 + p T^{2} \) | 1.47.a | 
|  | 53 | \( 1 + 6 T + p T^{2} \) | 1.53.g | 
|  | 59 | \( 1 + p T^{2} \) | 1.59.a | 
|  | 61 | \( 1 + 2 T + p T^{2} \) | 1.61.c | 
|  | 67 | \( 1 + 4 T + p T^{2} \) | 1.67.e | 
|  | 71 | \( 1 + p T^{2} \) | 1.71.a | 
|  | 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak | 
|  | 79 | \( 1 + 16 T + p T^{2} \) | 1.79.q | 
|  | 83 | \( 1 + 12 T + p T^{2} \) | 1.83.m | 
|  | 89 | \( 1 + 6 T + p T^{2} \) | 1.89.g | 
|  | 97 | \( 1 - 10 T + p T^{2} \) | 1.97.ak | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.58714476056244, −12.16649661625518, −11.88660162904151, −11.29112320155354, −10.95234435092320, −10.23026502114903, −10.06163934987649, −9.797350766576368, −9.184605975547039, −8.581138280897626, −8.207536384041536, −7.787029884462849, −7.101840483619252, −6.881960433906404, −6.143418770069835, −5.967231449065825, −5.317548788672770, −4.851413207176355, −4.374372460864895, −3.583149399464494, −3.032677938444629, −2.600819887333781, −1.784300821621843, −1.332192110233821, −0.7664445347877116, 0, 
0.7664445347877116, 1.332192110233821, 1.784300821621843, 2.600819887333781, 3.032677938444629, 3.583149399464494, 4.374372460864895, 4.851413207176355, 5.317548788672770, 5.967231449065825, 6.143418770069835, 6.881960433906404, 7.101840483619252, 7.787029884462849, 8.207536384041536, 8.581138280897626, 9.184605975547039, 9.797350766576368, 10.06163934987649, 10.23026502114903, 10.95234435092320, 11.29112320155354, 11.88660162904151, 12.16649661625518, 12.58714476056244
