Properties

Label 2-363090-1.1-c1-0-107
Degree $2$
Conductor $363090$
Sign $-1$
Analytic cond. $2899.28$
Root an. cond. $53.8450$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 8-s + 9-s + 10-s − 4·11-s + 12-s + 13-s − 15-s + 16-s + 2·17-s − 18-s + 19-s − 20-s + 4·22-s + 4·23-s − 24-s + 25-s − 26-s + 27-s + 6·29-s + 30-s − 4·31-s − 32-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 1.20·11-s + 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.485·17-s − 0.235·18-s + 0.229·19-s − 0.223·20-s + 0.852·22-s + 0.834·23-s − 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s + 1.11·29-s + 0.182·30-s − 0.718·31-s − 0.176·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 363090 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(363090\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13 \cdot 19\)
Sign: $-1$
Analytic conductor: \(2899.28\)
Root analytic conductor: \(53.8450\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 363090,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 - T \)
19 \( 1 - T \)
good11 \( 1 + 4 T + p T^{2} \) 1.11.e
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.76559228567260, −12.21393856235015, −11.87777721450700, −11.24698230588913, −10.78535283889126, −10.52301145435430, −10.00117059880699, −9.496610243591394, −9.158541099919286, −8.404948848123920, −8.284066588272737, −7.873458686748213, −7.330031348659955, −6.848263433139707, −6.554795575057198, −5.634925446374330, −5.352674342116525, −4.752866654170404, −4.205492590421007, −3.456321534868435, −3.024750031055742, −2.771876094202189, −1.891450138747197, −1.459270941810730, −0.6918866281500920, 0, 0.6918866281500920, 1.459270941810730, 1.891450138747197, 2.771876094202189, 3.024750031055742, 3.456321534868435, 4.205492590421007, 4.752866654170404, 5.352674342116525, 5.634925446374330, 6.554795575057198, 6.848263433139707, 7.330031348659955, 7.873458686748213, 8.284066588272737, 8.404948848123920, 9.158541099919286, 9.496610243591394, 10.00117059880699, 10.52301145435430, 10.78535283889126, 11.24698230588913, 11.87777721450700, 12.21393856235015, 12.76559228567260

Graph of the $Z$-function along the critical line