Properties

Label 2-361998-1.1-c1-0-10
Degree $2$
Conductor $361998$
Sign $1$
Analytic cond. $2890.56$
Root an. cond. $53.7640$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 2·5-s − 7-s − 8-s + 2·10-s + 4·11-s + 14-s + 16-s − 17-s − 4·19-s − 2·20-s − 4·22-s + 4·23-s − 25-s − 28-s − 6·29-s − 32-s + 34-s + 2·35-s + 2·37-s + 4·38-s + 2·40-s − 2·41-s − 4·43-s + 4·44-s − 4·46-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.894·5-s − 0.377·7-s − 0.353·8-s + 0.632·10-s + 1.20·11-s + 0.267·14-s + 1/4·16-s − 0.242·17-s − 0.917·19-s − 0.447·20-s − 0.852·22-s + 0.834·23-s − 1/5·25-s − 0.188·28-s − 1.11·29-s − 0.176·32-s + 0.171·34-s + 0.338·35-s + 0.328·37-s + 0.648·38-s + 0.316·40-s − 0.312·41-s − 0.609·43-s + 0.603·44-s − 0.589·46-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 361998 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(361998\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 13^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(2890.56\)
Root analytic conductor: \(53.7640\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 361998,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8129024985\)
\(L(\frac12)\) \(\approx\) \(0.8129024985\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 + T \)
13 \( 1 \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.41053909996768, −11.99659968115016, −11.39585223507117, −11.23270593674012, −10.90797581031490, −10.11686014439820, −9.658330258386992, −9.485718677006805, −8.726709610683577, −8.453297178671885, −8.143720370848873, −7.310675092652178, −7.139572020330280, −6.596838150399957, −6.227047794057421, −5.623284823823262, −4.958636779540969, −4.388032308663865, −3.819896455950880, −3.534172828888181, −2.932470013997604, −2.137096790852301, −1.706595116160242, −0.9488989964757502, −0.3080717990368132, 0.3080717990368132, 0.9488989964757502, 1.706595116160242, 2.137096790852301, 2.932470013997604, 3.534172828888181, 3.819896455950880, 4.388032308663865, 4.958636779540969, 5.623284823823262, 6.227047794057421, 6.596838150399957, 7.139572020330280, 7.310675092652178, 8.143720370848873, 8.453297178671885, 8.726709610683577, 9.485718677006805, 9.658330258386992, 10.11686014439820, 10.90797581031490, 11.23270593674012, 11.39585223507117, 11.99659968115016, 12.41053909996768

Graph of the $Z$-function along the critical line