Properties

Label 2-360e2-1.1-c1-0-108
Degree $2$
Conductor $129600$
Sign $1$
Analytic cond. $1034.86$
Root an. cond. $32.1692$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·7-s + 2·11-s − 6·13-s + 8·17-s + 4·19-s − 3·23-s + 7·29-s + 4·31-s − 4·37-s − 5·41-s − 8·43-s + 47-s + 18·49-s − 2·53-s + 6·59-s + 61-s + 3·67-s − 6·71-s + 8·73-s + 10·77-s + 10·79-s + 83-s − 9·89-s − 30·91-s + 2·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.88·7-s + 0.603·11-s − 1.66·13-s + 1.94·17-s + 0.917·19-s − 0.625·23-s + 1.29·29-s + 0.718·31-s − 0.657·37-s − 0.780·41-s − 1.21·43-s + 0.145·47-s + 18/7·49-s − 0.274·53-s + 0.781·59-s + 0.128·61-s + 0.366·67-s − 0.712·71-s + 0.936·73-s + 1.13·77-s + 1.12·79-s + 0.109·83-s − 0.953·89-s − 3.14·91-s + 0.203·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 129600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(129600\)    =    \(2^{6} \cdot 3^{4} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(1034.86\)
Root analytic conductor: \(32.1692\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 129600,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.260705725\)
\(L(\frac12)\) \(\approx\) \(4.260705725\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 5 T + p T^{2} \) 1.7.af
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 3 T + p T^{2} \) 1.23.d
29 \( 1 - 7 T + p T^{2} \) 1.29.ah
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 5 T + p T^{2} \) 1.41.f
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 3 T + p T^{2} \) 1.67.ad
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 9 T + p T^{2} \) 1.89.j
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.87691461637533, −12.91324101645208, −12.23468886316829, −11.93185339303122, −11.78285621490710, −11.28999917507393, −10.34054049411163, −10.19165542125170, −9.773581977359396, −9.079123659171464, −8.432346684411510, −8.041748955814624, −7.678084948960850, −7.197123953929364, −6.648968897738321, −5.838452314868058, −5.273473532481474, −4.915068091501473, −4.607867761406085, −3.745287367728029, −3.211928028689018, −2.458650821721631, −1.845843630355566, −1.251898347600347, −0.6741148459160092, 0.6741148459160092, 1.251898347600347, 1.845843630355566, 2.458650821721631, 3.211928028689018, 3.745287367728029, 4.607867761406085, 4.915068091501473, 5.273473532481474, 5.838452314868058, 6.648968897738321, 7.197123953929364, 7.678084948960850, 8.041748955814624, 8.432346684411510, 9.079123659171464, 9.773581977359396, 10.19165542125170, 10.34054049411163, 11.28999917507393, 11.78285621490710, 11.93185339303122, 12.23468886316829, 12.91324101645208, 13.87691461637533

Graph of the $Z$-function along the critical line