Properties

Label 2-35904-1.1-c1-0-45
Degree $2$
Conductor $35904$
Sign $-1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 2·5-s − 2·7-s + 9-s − 11-s − 2·15-s − 17-s − 6·19-s + 2·21-s − 6·23-s − 25-s − 27-s + 2·29-s + 4·31-s + 33-s − 4·35-s + 10·37-s − 6·41-s + 10·43-s + 2·45-s − 12·47-s − 3·49-s + 51-s + 4·53-s − 2·55-s + 6·57-s + 10·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.894·5-s − 0.755·7-s + 1/3·9-s − 0.301·11-s − 0.516·15-s − 0.242·17-s − 1.37·19-s + 0.436·21-s − 1.25·23-s − 1/5·25-s − 0.192·27-s + 0.371·29-s + 0.718·31-s + 0.174·33-s − 0.676·35-s + 1.64·37-s − 0.937·41-s + 1.52·43-s + 0.298·45-s − 1.75·47-s − 3/7·49-s + 0.140·51-s + 0.549·53-s − 0.269·55-s + 0.794·57-s + 1.30·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
11 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 - 16 T + p T^{2} \) 1.73.aq
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.36661766458358, −14.54710835892318, −14.13385958687559, −13.41710264450499, −13.13023280953516, −12.63256769542397, −12.10890928787475, −11.46137030229543, −10.90562402784624, −10.33086930829039, −9.832439874128912, −9.598792463416252, −8.801579608303390, −8.138612851758866, −7.671824630126908, −6.646828901619362, −6.381936779205136, −6.026689097328423, −5.317644235919447, −4.626557404068776, −4.053129819820539, −3.283500940710496, −2.312040539873648, −2.042928071440942, −0.8833430448813024, 0, 0.8833430448813024, 2.042928071440942, 2.312040539873648, 3.283500940710496, 4.053129819820539, 4.626557404068776, 5.317644235919447, 6.026689097328423, 6.381936779205136, 6.646828901619362, 7.671824630126908, 8.138612851758866, 8.801579608303390, 9.598792463416252, 9.832439874128912, 10.33086930829039, 10.90562402784624, 11.46137030229543, 12.10890928787475, 12.63256769542397, 13.13023280953516, 13.41710264450499, 14.13385958687559, 14.54710835892318, 15.36661766458358

Graph of the $Z$-function along the critical line