Properties

Label 2-35904-1.1-c1-0-41
Degree $2$
Conductor $35904$
Sign $-1$
Analytic cond. $286.694$
Root an. cond. $16.9320$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s − 4·7-s + 9-s − 11-s + 2·13-s − 2·15-s − 17-s + 4·19-s − 4·21-s − 25-s + 27-s − 2·29-s − 33-s + 8·35-s + 2·37-s + 2·39-s + 6·41-s − 4·43-s − 2·45-s − 12·47-s + 9·49-s − 51-s + 2·53-s + 2·55-s + 4·57-s + 8·59-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s − 1.51·7-s + 1/3·9-s − 0.301·11-s + 0.554·13-s − 0.516·15-s − 0.242·17-s + 0.917·19-s − 0.872·21-s − 1/5·25-s + 0.192·27-s − 0.371·29-s − 0.174·33-s + 1.35·35-s + 0.328·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.298·45-s − 1.75·47-s + 9/7·49-s − 0.140·51-s + 0.274·53-s + 0.269·55-s + 0.529·57-s + 1.04·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35904 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35904\)    =    \(2^{6} \cdot 3 \cdot 11 \cdot 17\)
Sign: $-1$
Analytic conductor: \(286.694\)
Root analytic conductor: \(16.9320\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 35904,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
11 \( 1 + T \)
17 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.28093009010489, −14.77311930267936, −14.04505530769221, −13.54830313937046, −13.06654338650390, −12.71183626823477, −12.08135649000563, −11.48103834131963, −11.06333387322104, −10.22107099707919, −9.850113948231643, −9.288080246957760, −8.817512670280821, −8.082224310758156, −7.689584591946997, −7.083463947623977, −6.502458498261604, −5.966555634513247, −5.200755804793274, −4.402394804715599, −3.730996253924102, −3.340338416792150, −2.826509304778446, −1.931371492131239, −0.8510313509775513, 0, 0.8510313509775513, 1.931371492131239, 2.826509304778446, 3.340338416792150, 3.730996253924102, 4.402394804715599, 5.200755804793274, 5.966555634513247, 6.502458498261604, 7.083463947623977, 7.689584591946997, 8.082224310758156, 8.817512670280821, 9.288080246957760, 9.850113948231643, 10.22107099707919, 11.06333387322104, 11.48103834131963, 12.08135649000563, 12.71183626823477, 13.06654338650390, 13.54830313937046, 14.04505530769221, 14.77311930267936, 15.28093009010489

Graph of the $Z$-function along the critical line