Properties

Label 2-35700-1.1-c1-0-4
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s + 9-s − 4·13-s − 17-s − 4·19-s − 21-s + 27-s − 4·29-s − 10·31-s − 2·37-s − 4·39-s − 6·47-s + 49-s − 51-s + 2·53-s − 4·57-s − 4·59-s + 10·61-s − 63-s − 4·67-s + 12·71-s + 10·73-s − 2·79-s + 81-s − 6·83-s − 4·87-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s + 1/3·9-s − 1.10·13-s − 0.242·17-s − 0.917·19-s − 0.218·21-s + 0.192·27-s − 0.742·29-s − 1.79·31-s − 0.328·37-s − 0.640·39-s − 0.875·47-s + 1/7·49-s − 0.140·51-s + 0.274·53-s − 0.529·57-s − 0.520·59-s + 1.28·61-s − 0.125·63-s − 0.488·67-s + 1.42·71-s + 1.17·73-s − 0.225·79-s + 1/9·81-s − 0.658·83-s − 0.428·87-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.322594797\)
\(L(\frac12)\) \(\approx\) \(1.322594797\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 18 T + p T^{2} \) 1.97.as
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.94810193291775, −14.36397388901309, −14.06744840565300, −13.19014611514752, −12.86447392580539, −12.52616765687711, −11.79725936560352, −11.18658896459769, −10.65701102906197, −10.03561026409212, −9.559786785158054, −9.054302366600173, −8.559253103432750, −7.836695271519337, −7.377118828046565, −6.801824230318110, −6.276426444224846, −5.384787551454314, −4.991711080360787, −4.082897814535373, −3.692768762486912, −2.879971635888439, −2.208994700327025, −1.687088504972017, −0.3880762700396310, 0.3880762700396310, 1.687088504972017, 2.208994700327025, 2.879971635888439, 3.692768762486912, 4.082897814535373, 4.991711080360787, 5.384787551454314, 6.276426444224846, 6.801824230318110, 7.377118828046565, 7.836695271519337, 8.559253103432750, 9.054302366600173, 9.559786785158054, 10.03561026409212, 10.65701102906197, 11.18658896459769, 11.79725936560352, 12.52616765687711, 12.86447392580539, 13.19014611514752, 14.06744840565300, 14.36397388901309, 14.94810193291775

Graph of the $Z$-function along the critical line