Properties

Label 2-35700-1.1-c1-0-13
Degree $2$
Conductor $35700$
Sign $1$
Analytic cond. $285.065$
Root an. cond. $16.8838$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s + 4·11-s − 2·13-s − 17-s − 2·19-s − 21-s + 6·23-s − 27-s − 2·29-s + 10·31-s − 4·33-s + 8·37-s + 2·39-s + 8·43-s − 4·47-s + 49-s + 51-s + 6·53-s + 2·57-s − 4·59-s + 2·61-s + 63-s + 8·67-s − 6·69-s + 8·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s + 1.20·11-s − 0.554·13-s − 0.242·17-s − 0.458·19-s − 0.218·21-s + 1.25·23-s − 0.192·27-s − 0.371·29-s + 1.79·31-s − 0.696·33-s + 1.31·37-s + 0.320·39-s + 1.21·43-s − 0.583·47-s + 1/7·49-s + 0.140·51-s + 0.824·53-s + 0.264·57-s − 0.520·59-s + 0.256·61-s + 0.125·63-s + 0.977·67-s − 0.722·69-s + 0.949·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 35700 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(35700\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(285.065\)
Root analytic conductor: \(16.8838\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 35700,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.398303243\)
\(L(\frac12)\) \(\approx\) \(2.398303243\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 4 T + p T^{2} \) 1.89.e
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.01016524341719, −14.44796929848496, −13.90305110975056, −13.35748504834964, −12.65184984735824, −12.35134405025080, −11.63939446835283, −11.30548295410992, −10.85415192520177, −10.14114932664082, −9.560874880213539, −9.159363359559158, −8.447971834903163, −7.920382260311060, −7.154334336633639, −6.721999339880969, −6.198663837182003, −5.558605409181536, −4.808104185872950, −4.402144648791777, −3.799984206504740, −2.852694998950903, −2.198799574849160, −1.239030023514372, −0.6773982913150067, 0.6773982913150067, 1.239030023514372, 2.198799574849160, 2.852694998950903, 3.799984206504740, 4.402144648791777, 4.808104185872950, 5.558605409181536, 6.198663837182003, 6.721999339880969, 7.154334336633639, 7.920382260311060, 8.447971834903163, 9.159363359559158, 9.560874880213539, 10.14114932664082, 10.85415192520177, 11.30548295410992, 11.63939446835283, 12.35134405025080, 12.65184984735824, 13.35748504834964, 13.90305110975056, 14.44796929848496, 15.01016524341719

Graph of the $Z$-function along the critical line